The First Potent Inhibitors for Human Glutaminyl Cyclase: Synthesis and Structure–Activity Relationship

Mirko Buchholz,[†] Ulrich Heiser,^{*,†} Stephan Schilling,[‡] André J. Niestroj,[†] Katrin Zunkel,[‡] and Hans-Ulrich Demuth^{†,‡}

Departments of Medicinal Chemistry and Enzymology, Probiodrug AG, Weinbergweg 22, 06120 Halle, Germany

Received August 2, 2005

The first effective inhibitors for human glutaminyl cyclase (QC) are described. The structures are developed by applying a ligand-based optimization approach starting from imidazole. Screening of derivatives of that heterocycle led to compounds of the imidazol-1-yl-alkyl thiourea type as a lead scaffold. A library of thiourea derivatives was synthesized, resulting in an inhibitory improvement by 2 orders of magnitude, leading to 1-(3-(1*H*-imidazol-1-yl)propyl)-3-(3,4-dimethoxyphenyl)thiourea as a potent inhibitor. Systematic exploitation of the scaffold revealed a strong impact on the inhibitory efficacy and resulted in the development of imidazole–propyl–thioamides as another new class of potent inhibitors. A flexible alignment of the most potent compounds of the thioamide and thiourea class and a QC substrate revealed a good match of characteristic features of the molecules, which suggests a similar binding mode of both inhibitors and the substrate to the active site of QC.

Introduction

Glutaminyl cyclase (QC, EC 2.3.2.5) catalyzes the intramolecular cyclization of N-terminal glutamine residues to pyroglutamic acid (pGlu) under liberation of ammonia.¹⁻³ OC is located in mammalian pituitary, hypothalamus, other parts of the brain, adrenal medulla, and B lymphocytes.^{1,4} Some peptide hormones, such as tyrotropin releasing hormone (TRH) and gonadotropin releasing hormone (GnRH), require the pGlu on the N-terminus for their biological activity.^{5,6} The colocalization of QC and its putative products within the regulated secretory pathway suggests a potential involvement of the enzyme in the final maturation of these peptide hormones.⁷ The recently described ability of human QC to convert the N-terminal glutamate of the peptide Glu³-A β (3-21), of the amyloid precursor protein (APP), into the respective pGlu³-A β (3-21) in an in vitro experiment suggests QC's possible involvement in the initiation of the neurotoxic plaque formation in Alzheimer's disease (AD).8 It was shown that, preferentially, the core of diffuse plaques consists of peptides containing N-terminal pGlu that have an enhanced tendency to aggregate, originating from precursors bearing an N-terminal glutamate.⁹⁻¹² Hence, besides the crucial role in hormone maturation, human QC might be involved in the pathophysiological process of AD, evoking its qualification as a new potential drug target. Testing of that hypothesis requires the development of highly efficient inhibitors.

Recently, we have reported investigations of the substrate specificity demonstrating a preference of aromatic side chains in the penultimate position to the N-terminal glutamine in the case of small tripeptide substrates.³ Moreover, the catalytic activity was zinc-dependent.¹³ This finding is supported by the strong structural homology between *Aeromonas proteolytica* aminopeptidase (ApAP) and QC and a conservation of all residues that are necessary for an effective zinc coordination.^{14,15}

We found imidazole to be a weak inhibitor of QC activity; therefore, screening results of imidazole derivatives leading to suggestions for inhibitory structures were presented.¹³ Besides histidine (frequently found as a zinc-coordinating ligand in metalloenzymes), imidazoles are reported to interact with accessible zinc atoms in the active site of carboxypeptidase A or to form stable complexes with active site residues of serine proteases under the presence of zinc ions.^{16–18} The imidazole derivatives emerging from the here presented QSAR study as powerful QC inhibitors are likely to act as such zinc-chelating agents.

Results and Discussion

Screening. On the basis of the finding that imidazole is a weak inhibitor of QC, an initial screening was performed with a set of five- and six-membered heterocycles. Partial results of this screening campaign were published earlier.¹³ The exchange of nitrogen for other heteroatoms or a change of the ring size led to nonpotent compounds (Figure 1).

The substitution pattern of the imidazole derivatives had a strong influence on the inhibitory effect (Figure 2). 1-Methylation led to a 3-fold improvement and 1-benzylation led to a 14-fold improvement of inhibitory power compared to that of imidazole. Interestingly, a 1-phenylation or an additional methylation in the 2-position of 1-benzylimidazole decreased the inhibitory effect dramatically.

On the basis of these findings, a library of 1-alkylimidazoles was screened for inhibitory efficacy against human QC. The chemical structure of the obtained hits uncovered a preference for a longer alkyl spacer connected to a hydrophobic residue for effective binding to QC. The best results are displayed in Figure 3. Due to its good chemical accessibility, compound **2** was selected for further optimization and analysis of the inhibitory potency of its derivatives.

Chemistry. The preparation of the urea and thiourea type analogues of **2** was conducted according to Schemes 1 and 2. Thereby, the unbranched 1-aminoalkyl-imidazole precursors **8** and **10** were prepared by alkylation of imidazole with the bromophthalimides **4** and **5** followed by the conversion of the phthalimides into primary amines by hydrazinolysis.¹⁹ The 2-methyl-branched derivatives **17** and **18** were generated starting from the 2(R)- or 2(S)-isomers of 3-bromo-2-methylpropanol,

^{*} Corresponding author. Tel: +49 (0)345 5559908. Fax: +49 (0) 345 5559901. E-mail: ulrich.heiser@probiodrug.de.

[†] Department of Medicinal Chemistry.

[‡] Department of Enzymology.

Figure 1. Screening results for different heterocycles.

Figure 2. Screening results; 1-benzyl-1*H*-imidazole shows an improved inhibitory potency.

 $K_i = 0.7 \pm 0.01 \ \mu M$

Figure 3. Screening results, 2 was selected for further optimization.

respectively. After protection of the alcohol by means of a THPether, followed by alkylation with phthalimide, the THPprotecting group was removed and the resulting alcohol was reacted with mesyl chloride to give the corresponding mesylates **15** and **16**. The alkylation of imidazole with these mesylates, followed by hydrazinolysis, led to the primary amines **17** and **18**. The 1-(3-amino-2-cyclopropylpropyl)imidazole **22** was generated from methyl 1-carbamoylcyclopropanecarboxylate **19**.²⁰ Reduction to the corresponding amino alcohol, followed by Boc-protection of the amino-function and subsequent introduction of imidazole after mesylation, led to the protected primary amine **21**, and deprotection led to **22**. The *N*-methylated precursor **25** resulted from the alkylation of imidazole with the N-Boc protected 1-methylamino-3-chloropropane **24** followed by deprotection of the methylamino function.

The urea and thiourea analogues 26-59 were obtained from the reaction of the 1-(aminoalkyl)imidazoles 8-10, 17, 18, 22, and 25 with the corresponding isocyanate and isothiocyanates.

The preparation of the benzothiazole analogues **66–68** was performed starting from the corresponding 2-chlorobenzothia-

zole derivatives and subsequent alkylation with 1-(3-aminopropyl)imidazole 9.²¹ The dimethoxy derivative 69 was prepared starting from 3,4-dimethoxyaniline 60 and subsequent formation of the 2-amino-5,6-dimethoxy-benzimidazole 61²² (Scheme 3). After conversion into the chloro derivative 62,²³ 5,6-dimethoxy-2-imidazolylpropylaminobenzothiazole 69 was obtained after alkylation with 9.

The thioamides 70-77 were prepared according to Scheme 4, by reacting the corresponding phenylacetyl chlorides with 9. The resulting amide was converted into the thioamide by means of Lawesson's reagent. Compound 81 was prepared from 3,4dimethoxyphenylacetonitrile 78. Thereby, the cyclopropyl ring was introduced via a phase-transfer reaction using benzyltriethylammonium chloride (TEBA) as catalyst.²⁴ After hydrolysis of the nitrile,²⁵ the carboxylic acid **79** was reacted with **9** under mixed anhydride conditions. The resulting carboxamide 80 was then converted into the thioamide 81. The inverse thioamide **85** (Scheme 4) resulted from the reaction of 5-bromopentanovl chloride 82 with 3,4-dimethoxyaniline, followed by alkylation to imidazole. The formation of a cyclic side product led to a diminished yield for the alkylation step. The crude mixture was subjected to the reaction with Lawesson's reagent, and the byproduct 85a was separated from the desired thioamide 85 by means of flash column chromatography.

Results. The data shown in Table 1 represent the results for the QSAR of thiourea analogues of **2**. Keeping the imidazole– propyl-thiourea part of the molecule constant, the variation of the aryl part revealed a big influence on the inhibitory potency. Thereby, the methyl derivative **26** and the branched alkyl derivatives **28** and **29** were found to be the inhibitors with the lowest potency. In contrast, the unbranched *n*-butyl derivative **27** was found to be of a 3-fold increased efficacy as compared to the branched homologues.

An increased potency compared to 26, 28, and 29 was found for the norbornyl, cyclohexyl, benzyl, and phenyl derivatives **30–33**. Thereby, the saturated cyclohexyl **31** and the phenyl derivative 33 were of similar potency. An elongation of the distance between the thiourea part and hydrophobic substituent as in the benzyl derivative 32 led to a decrease in potency compared to 33. In contrast, an improvement was observed for the bulky norbornyl derivative **30** and the α -naphthyl derivative **34**. As the screening hit **2** was a *p*-chloro-substituted phenyl thiourea, further investigation was focused on the influence of substituents in the para-position of the phenyl residue. As a result, a *p*-methyl (35), *p*-ethyl (36), *p*-(dimethylamino) (38), *p*-nitro (39), *p*-acetvl (40), or *p*-methylthio (41) substitution led to a group of compounds with comparable inhibitory potency of around $2 \mu M$. Interestingly, the electronical character of these substituents had only little impact on the potency. For instance, the basic p-dimethylamino function (38) had an influence comparable to a *p*-methyl (35) or *p*-nitro group (39). A slight potency improvement was achieved after the introduction of the *p*-acetyl substituent as in **40** or a methylthio substitution as in 41. In contrast, a p-fluoro substitution as in 37 led to a 4-fold decreased potency compared to 2.

The introduction of an ether moiety as in 42-44 resulted in a submicromolar inhibitory activity. Because of the inhibitory activity improvement resulting from the introduction of a *p*-methoxy function, a closer look was taken at the influence of the number and position of methoxy substituents on the phenyl ring. The results are shown in Table 2. The shift of the methoxy group to position 3 as in 46 decreased the potency 2-fold as compared to 44. In strong contrast to that, the combination of two methoxy substituents, leading to the 3,4-dimethoxypheScheme 1^a

^{*a*} Reagents and conditions: (a) Na-imidazolate, DMF, 8 h, 100 °C; (b) H_2N-NH_2 · H_2O , EtOH, 8 h, reflux then 4 N HCl, 6 h, reflux; (c) 3,4-dihydro-2*H*-pyran, pyrTos, CH₂Cl₂, 12 h, rt; (d) K-phthalimide, DMF, 24 h, 80 °C; (e) pyrTos, EtOH, 3 h, 55 °C; (f) MsCl, NEt₃, CH₂Cl₂, 3 h, 0 °C, 12 h, rt; (g) LiAlH₄, THF, 4 h rt, 2 h reflux; (h) Boc₂O, NEt₃, CH₃OH, 12 h, 50 °C; (i) HCl in 1,4-dioxane (4 M), 1 h, 0 °C; (k) Boc₂O, NaOH, 1,4-dioxane/water (2:1), 20 h, rt.

^{*a*} Reagents and conditions: (a) 3,4-dimethoxyphenyl isocyanate, acetonitrile, 8 h, rt; (b) R–NCS, EtOH, 2 h, reflux; (c) 3,4-dimethoxyphenyl isothiocyanate, EtOH, 2 h, reflux.

nylthiourea 53, resulted in a remarkable improvement of the inhibitory power, exhibiting a K_i value of 60 nM. As a result of that finding, the two methoxy functions were incorporated in a ring system as in 45 and 48. The dioxolane-containing derivative 45 and the dioxane-derivative 48 both lost inhibitory power as compared to 53. Moreover, neither the combination of the two methoxy functions in the 3,5- (49) or 2,4-positions (50) nor the incorporation of an additional methoxy function (52) improved the potency compared to 53, but they did lead to more potent compounds than the screening hit 2.

Taking the potent 3,4-dimethoxyphenyl derivative **53** as a starting point, more general changes to the molecule's scaffold have been performed. For example, the change of the thiourea moiety of **53** into an urea as for compound **51** led to a decreased

potency, as did the prolongation of the distance between the phenyl core and the thiourea by one methylene unit in the case of compound **47**. The latter confirms the finding for the difference in potency in the case of compounds **32** and **33**, both lacking the two methoxy functions at the phenyl ring. The derivatives with a different distance between imidazole and thiourea, as well as branched propyl chains (Table 3), were prepared in order to investigate the influence of the chain length and flexibility of the propyl linker between imidazole and thiourea part of **53**. As a result, the reduction by one methylene unit, as in **54**, led to a dramatic decrease of the inhibitory power. On the other hand, extension of the linker by one methylene unit, as in **55**, resulted in only a moderate decrease in inhibitory activity. The introduction of branches at the 2-propyl position

^a Reagents and conditions: (a) KSCN, acetic acid (96%), bromine, 10 h, 35 °C; (b) H_3PO_4 (85%), NaNO₂, H_2O , 2 h, -10 to 0 °C; (c) CuSO₄·5 H_2O , NaCl, 2 h, -5 °C; (d) 9, NEt₃, 1-butanol, 24 h, reflux.

^{*a*} Reagents and conditions: (a) 9, NEt₃, CH₂Cl₂, 1 h, rt; (b) Lawesson's reagent, 1,4-dioxane, 8 h, reflux; (c) 2-bromo-1-chloroethane, TEBA, KOH, 2 d, rt; (d) KOH, ethylene glycol, 12 h, reflux; (e) 9, CAIBE, NMM, THF, 5 min, -5 °C, 10 h, rt; (f) 3,4-dimethoxyaniline, NEt₃, 1,4-dioxane, 2 h, rt; (g) Na-imidazolate, 8 h, 100 °C.

again decreased the inhibitory efficacy in general. Therefore, the 2(R)-methyl derivative 56 was more effective compared to the (S)-configurated compound 57. The most rigid cyclopropyl derivative 58 had a 40-fold higher K_i value compared to 53. Moreover, a methyl group, introduced at the 1-nitrogen of the thiourea part of 53, leading to compound 59, resulted in a 80fold decrease of inhibitory power. In the case of the derivatives 66-69, the phenyl part and the thiourea moiety were incorporated in a benzothiazole ring system (Table 4). All compounds showed a decreased inhibitory potency as compared to 53. Again, the substitution pattern influenced the inhibitory effect. Thereby, the introduction of a chloro substitutiuent in the 6-position (67) of the benzothiazole had no effect compared to the unsubstituted molecule 66, but a methoxy group at this position (68) led to a 2-fold decreased K_i value. In contrast to compound 53, the introduction of a second methoxy function at the 5-position led to a less potent derivative 69 as compared to the monomethoxy substituted equivalent 68.

The thioamide derivative 70, lacking one potential H-bond donor at the thiourea part, exhibited submicromolar inhibitory activity. Interestingly, the inversion of the thioamide as in 85 (see Figure 4) caused a potency loss. This finding led to a further change of the scaffold of **70** by substitution of the methylene protons of the benzyl residue (Table 5). Thereby, phenyl- (71, 72), p-chlorophenyl- (75, 76), and the 4-methoxy-substituted thioamides (74, 77) were used to study the influence of the substitution pattern of the benzyl moiety. The introduction of a methyl group in the (R)- (71) or (S)-configuration (72) influenced the inhibitory potency compared to the analogue phenyl thiourea 33. In the case of the (S)-enantiomer 72, it led to a potency improvement. The phenyl-substituted derivative 73 was of comparable potency to compound 33. An incorporation of an alkyl ring at the methylene group, leading to phenylcycloalkyl thioamides, influenced the inhibitory potency, depending on the ring size. A five-membered ring as in 76 was found to be less potent than the cyclobutyl derivative 75, both featuring a strong

Table 1

26

27

Table 2

compd	\mathbb{R}^1	\mathbb{R}^2	R ³	\mathbb{R}^4	Х	Y	$K_{\rm i} (\mu { m M})$
45	Н	-OC	H_2O-	Н	S	NH	5.66 ± 0.17
46	OMe	Н	Н	Н	S	NH	1.86 ± 0.08
47	Н	OMe	OMe	Н	S	NHCH ₂	1.55 ± 0.02
48	Н	-OCH	$_2CH_2O-$	Н	S	NH	1.12 ± 0.03
49	OMe	Н	OMe	Н	S	NH	0.75 ± 0.02
50	Н	OMe	Н	OMe	S	NH	0.56 ± 0.02
51	Н	OMe	OMe	Н	0	NH	0.49 ± 0.01
52	OMe	OMe	OMe	Н	S	NH	0.34 ± 0.01
53	Н	OMe	OMe	Н	S	NH	0.06 ± 0.0002

decreased potency compared to the *p*-chlorophenyl thiourea 2. The bulky cyclohexyl thioamide 77 was 3 times less potent as compared to the 4-methoxyphenyl thiourea 44. In contrast, the cyclopropyl-substituted derivative 74 was of comparable potency Table 3

$$\left(\begin{array}{c} N \stackrel{\bullet}{\longrightarrow} N \stackrel{\bullet}$$

compd	\mathbb{R}^1	\mathbb{R}^2	R ³	п	$K_{\rm i}$ ($\mu { m M}$)
54	Н	Н	Н	0	17.66 ± 0.83
55	Н	Н	Н	2	0.55 ± 0.02
56 (R)	Me	Н	Н	1	0.34 ± 0.007
57 (S)	Н	Me	Н	1	0.76 ± 0.004
58	-(C	$-(CH_2)_2-$		1	2.33 ± 0.50
59	Н	Н	Me	1	4.83 ± 0.11

Table 4

compd	\mathbb{R}^1	\mathbb{R}^2	$K_{\rm i} (\mu { m M})$
66	Н	Н	3.73 ± 0.20
67	Cl	Н	3.35 ± 0.01
68	OMe	Н	1.57 ± 0.06
69	OMe	OMe	2.00 ± 0.01

to 44 and the introduction of the second methoxy group finally led to compound 81, with a potency comparable to compound 53.

Molecular Modeling. Since all compounds act as competitive inhibitors against a glutamine-containing QC substrate, investigations of the possible binding mode were undertaken. To focus on similarities of molecular features, a flexible alignment of the good binding substrate H-Gln-Phe-Ala-NH2 and the most potent compounds 53 (Table 2) and 81 (Table 5) was performed. The resulting database consisted of 192 suggestions for possible alignments. The evaluation, with respect to their average strain energy (U) and the alignment score (S), led to a solution ranking on position 37 of the database. A good match of characteristic features necessary for an effective binding was observed. First, the acceptor nitrogen of imidazole matches with the acceptor carbonyl of the glutamine side chain as the probable zinc-binding site. The donor nitrogen of 53 (Figure 5A) matches the C-terminal amide nitrogen of glutamine. The finding that the second donor nitrogen of 53 is not overlaid with a donor of the substrate can support the result of the weaker binding of 85 (Figure 4), which lacks the first donor but features the second nitrogen donor. The preference of QC for hydrophobic side chains in penultimate position to the N-terminal glutamine of the substrates corresponds to the finding of the beneficial phenyl substitution for the thiourea-containing inhibitor molecules and the benzyl substitution in case of the thioamides. The phenyl side chain of the substrate and the phenyl part of the inhibitor molecules 53 and 81 are overlaid in the alignment.

Discussion. Lacking 3D structural information of the target enzyme QC, the ligand-based approach exemplified here led to potent inhibitors of the enzyme with enhanced activity as compared with the initial screening compounds. The most potent competitive inhibitors, 53 and 81, were used in an alignment with the short peptide H-Gln-Phe-Ala-NH₂, exhibiting one of the highest specificity constants as QC substrate. As a result, similarities in their structure responsible for a productive binding to the active site could be identified. This finding has helped to shape a potential pharmacophore with respect to the binding features of the thiourea and thioamide class of inhibitors of QC.

Due to the structural homology of human QC to aminopeptidases and the conservation of the active site residues necessary

Figure 4. Comparison of the inhibitory efficacy of the *N*-methylthiourea 59, the reverse thioamide 85, and the thioamide compounds 70 and 81.

Table 5

Compound	R ¹	R ²	R ³	R ⁴	K _i (μM)
70	OMe	OMe	Н	Н	0.39 ± 0.01
71 <i>(R)</i>	Н	Н	Me	Н	7.34 ± 0.26
72 <i>(S)</i>	Н	Н	Н	Me	3.51 ± 0.09
73	Н	Н	H ,	\bigcirc	4.48 ± 0.16
74	OMe	Н	-(CH ₂) ₂ -		0.40 ± 0.008
75	Cl	Н	-(CH ₂) ₃ -		4.88 ± 0.25
76	Cl	Н	-(CH ₂) ₄ -		7.33 ± 0.06
77	OMe	Н	-(CH ₂) ₅ -		2.22 ± 0.18
81	OMe	OMe	-(CH ₂) ₂ -		0.09 ± 0.005

for a zinc binding, QC was determined to be a metalloenzyme.^{13,14} With regard to that finding, we suggest an interaction of the basic imidazole nitrogen of the inhibitory structures with the catalytic zinc ion. This hypothesis is supported by the finding that the catalytic process of the pyroglutamyl formation was found to be zinc-dependent and that human QC, similar to metaldependent aminopeptidases, is inhibited by imidazole, 1,10phenanthroline, and dipicolinic acid.¹³ In contrast, Bateman et al.¹⁴ discuss a non-zinc-dependent catalysis by QC and the absence of zinc ions in the active site of the enzyme. However, we recently demonstrated stoichiometric Zn binding using two independent techniques.²⁶

The mode of zinc binding of imidazole-containing inhibitors of QC is understood as a single coordination to the single zinc ion, since imidazole exhibits only one coordination site (see Figure 5). A proof for that hypothesis, however, should result from the solution of the 3D structure of the protein.

Figure 5. Proposed binding mode at the active site of human QC for 53 (above) and the substrate H-Gln-Phe-Ala-NH₂. The zinc atom is coordinated by the imidazole part of 53 or the glutamine side chain in case of the substrate. The essential H-bond donor function (A) was found in both structures, and so was the aromatic moiety (B), pointing toward an interaction with a hydrophobic pocket. The methoxy substituents (C) have a big impact on the inhibitory binding.

Figure 6. Flexible alignment of **53**, **81**, and the substrate H-Gln-Phe-Ala-NH₂. It was ranked at position 37 (U = -4.32 kcal/mol, S = 97.91 kcal/mol) of 192 solutions. A good match of the proposed zinccoordination site, the H-bond donor nitrogens, and the aromatic substituents is recognizable.

For the *N*-alkyl spacer between the imidazole and thiourea moiety, a distance of three methylene units was found to be optimal. The prolongation by one methylene unit was tolerated (see compound **55**) but led to a decrease of inhibitory activity. A shortening by one methylene unit had a drastic decreasing effect (see compound **54**). The introduction of branches at the 2-propyl position reduces the inhibitory efficacy of all synthesized derivatives. However, a partial flexible chain as in the methyl-branched derivatives **56** and **57** was better tolerated as the fixation by means of a cyclopropyl ring as in **58**. This points toward the presence of a narrow space around the catalytic zinc ion, which is supported by the finding that only flat heterocycles, like the above-mentioned 1,10-phenanthroline and dipicolinic acid, are able to bind effectively to the active site of QC.

The thiourea moiety features two H-bond donor positions at the 1-N and 3-N atoms and one H-bond acceptor position at the sulfur atom of the thiocarbonyl moiety. An interesting finding was the higher efficacy of the respective thioureaderivative **53** compared to the urea **51**. Obviously, the acceptor function of the thiocarbonyl moiety is less eminent for the interaction with the protein in terms of H-bonding, because sulfur is a weaker H-bond acceptor than oxygen. This points to a greater importance of the thioamide donor sites of the thiourea for an effective binding. Moreover, a calculation of the hydrogen-bonding energy between an amide- or thioamidenitrogen H-bond donor and a carbonyl acceptor resulted in a stronger interaction between the thioamide donor and the carbonyl acceptor.^{27,28} This could explain the better inhibitory efficacy of a thiourea over the respective urea analogue. The thioamides (see Table 5), having only one potential H-bond donor site (see Figure 5A), show an inhibitory activity comparable to the respective thiourea compounds. On the other hand, the inverse thioamide **85** (see Figure 4) shows a reduced inhibitory activity compared to **70**. Moreover, in case of a change of the 1-N thioamide proton in compound **53** into a methyl group as in **59**, the inhibitory power drops by a factor of 80. This effect is likely due to the absence of the 1-N proton and could be amplified by a sterical hindrance when the methyl group is introduced at this position. All these investigations indicate that the 1-N thioamide position of the thiourea compounds, as well as the *N*-propyl thioamide functionality of thioamide derivatives, is a crucial point of interaction with the pharmacophore of QC.

The beneficial substitution of the thiourea by a phenyl group or a benzyl group in case of the thioamides, respectively, suggests an interaction with a hydrophobic pocket of the protein (Figure 5B). Thereby, the results regarding the influence of different kinds of alkyl substituents on the inhibitory potency are found to be difficult to link to certain structural features. The thiourea derivatives presented in Table 1 point toward a preference for space-filling hydrophobic substituents. The beneficial effect of the introduction of a norbornyl residue (see compound 30) or α -naphthyl residue (see compound 34) over small alkyl substituents (see compound 26) and branched alkyl substituents (see compounds 28, 29) serves as an example. Moreover, an aromatic ring system seems to not be a requirement, probably ruling out a π - π -interaction with the protein. An example for that finding is compound 33, wherein a phenyl substituent leads to a comparable potency as a cyclohexyl group (see compound 31). A further hint for the hydrophobic character of the interaction with the protein is the improvement of the inhibitory power by the extension of the phenyl substituent by hydrophobic residues. Thereby, electron-enriching groups introduced in the para-position of the phenyl ring, like alkyl (see compound 35, 36), thioalkyl (see compound 41), or alkyloxy (see compound 42-44, 74), always lead to an improved efficacy as compared to the unsubstituted phenyl residue.

In contrast, the electron-withdrawing fluorine as in compound 37 shows no difference in efficacy in comparison to 33, whereas a chloro substitution (see compound 2), probably due to the +M-effect of the chlorine, has a beneficial effect on the inhibitory power. The effect of the introduction of the electronwithdrawing *p*-nitro substituent (see compound **39**) or alkylcarbonyl (see compound 40) remains difficult to interpret, as it has an improving effect on the inhibitory potency as compared to 33 and still is a more effective inhibitor than 37. The basic *p*-dimethylamino compound **38** ranks within the class of derivatives with hydrophobic substitutents mentioned above, obviously lacking an additional hydrophobic interaction with the protein and featuring an increased effect on the inhibitory power compared to 33. This as well is likely due to the higher electron density of the phenyl ring. The position of the methoxy group has a great influence on the inhibitory potency (see compound 46, Table 2). Two methoxy groups lead to a great increase of the inhibitory power only when they were introduced in position 3 and 4 of the phenyl ring (see compound 53). The strong decrease of the potency in the case of the incorporation of the 3,4-methoxy groups in a dioxane ring (see compound 48), compared to that of 53, and the loss of the potency in the case of the smaller and less flexible dioxolane (see compound 45) are examples of the high sensitivity of the interactions between the hydrophobic pocket of the protein and the inhibitor molecule toward minor changes in the inhibitor structure.

The presented thiourea and urea class of compounds should feature a nearly planar geometry, due to the flat shape of the thiourea group and the partial hindrance of the free rotation of the phenyl ring caused by conjugative effects. In contrast to that, the phenyl ring as in the thioamide compound 70 is freely rotatable, which then leads to a loss of inhibitory activity as compared to 53, probably resulting from a higher flexibility of the molecule. The stepwise reduction of rotatory freedom around the alkyl bonds of the benzyl residue (see compounds 70-77, 81 Table 5) leads to the cyclopropyl-containing derivative 81 in which the inhibitory potency is reestablished. In addition, the spatial position of the phenyl ring, if influenced by the introduction a methyl group as in 71 and 72, causes differences in the inhibitory efficacy depending on the configuration. The introduction of an additional bulky phenyl residue (see compound 73), leading to a symmetrical substitution pattern, resulted in an efficacy comparable to the average activity of the two methyl analogues 71 and 72.

In conflict with the binding mode of QC inhibitors evolved here is the finding that the screening compound **3**, lacking the 1-N H-bond donor site and the hydrophobic part of the molecule, features an inhibitory power comparable to **43** and **44**. An explanation for that effect could be that the molecule binds to different residues at the active site, probably involving its additional amide carbonyl function at the ring.

The incorporation of the thiourea and the phenyl moiety into a flat aromatic benzothiazole ring leads to another class of compounds with a different binding to the active site of QC (see Table 4). The unsubstituted derivative 66 was found to be of a comparable efficacy to 33. In this context the introduction of hydrophobic, electron-enriching substituents did lead to an improvement of inhibitory efficacy in case of the methoxy derivative 68, but not in case of the chloro derivative 67. In contrast to the thiourea structures 44 and 53 and the thioamides 74 and 81, the introduction of a second methoxy group in the 5-position of the benzimidazole ring did not lead to an improvement of inhibitory power (see compound 69). Due to the change of sterical and electronical features of the molecule by creating a single bond between the thiourea-sulfur and the phenyl ring, obviously an optimal interaction with the hydrophobic pocket of the protein as with 53 and 81 is not possible. This leads to a drop of inhibitory activity.

Consequently, the compounds **53** and **81** appear to be the most powerful QC inhibitors so far. Moreover, the collection of the inhibitor molecules helped to identify crucial interaction points of the active site of QC. This will lead to further QSAR investigations involving also 3D pharmacophore searches and the 3D structure of QC.

Experimental Section

Screening. Screening compounds were purchased form Aldrich Co. The 1-alkylimidazole library was accomplished from the compound collections by VitasMLab Ltd., Interbioscreen Inc., World Molecules Inc., Maybridge Co., and ChemBridge Inc., summing up to 200 compounds selected for testing. Compound 1 was purchased from ChemBridge Inc., while 2 and 3 where purchased from Maybridge Co.

Chemistry. Starting materials and solvents were purchased from Aldrich and Maybridge Co. Melting points were measured on a Kofler hot stage apparatus and are uncorrected. ESI-Mass spectra were obtained with a SCIEX API 365 spectrometer (Perkin-Elmer). The high-resolution positive ion ESI mass spectra were obtained from a Bruker Apex III 70e Fourier transform ion cyclotron resonance mass spectrometer (Bruker Daltonics, Billerica, MA) equipped with an Infinity cell, a 7.0 T superconducting magnet (Bruker, Karlsruhe, Germany), an RF-only hexapole ion guide, and an external electrospray ion source (API Apollo) (voltages: endplate, -3.700 V; capillary, -4.400 V; capillary exit, 100 V; skimmer, 1.15 V; skimmer, 2.6 V). Nitrogen was used as drying gas at 150 °C. The sample solutions were introduced continuously via a syringe pump with a flow rate of 120 μ L h⁻¹. All data were acquired with 256 k data points and zero filled to 1024 k by averaging 32 scans. The ¹H NMR (500 MHz) data was recorded on a BRUKER AC 500, using DMSO- d_6 as solvent, unless otherwise specified. Chemical shifts are expressed as parts per million downfield from tetramethylsilane. Splitting patterns have been designated as follows: s (singlet), d (doublet), dd (doublet of doublet), t (triplet), m (multiplet), and br (broad signal). All solvents were dried and distilled prior to use. Aluminum oxide, basic type 5016A, was used for column chromatography. The purity of the compounds was determined by HPLC analysis. The system consisted of a Merck-Hitachi device (model LaChrom) utilizing a Li-Chrospher 100 RP 18 (5 μ m), analytical column (length: 125 mm, diameter: 4 mm), and a diode array detector (DAD) with λ = 214 and 270 nm as the reporting wavelengths. The compounds were analyzed by applying the gradient $0-5 \min 5\%$ (A), 5-17min 15% (A), 15-27 min 95% (A), and 27-30 min 95% (A) at a flow rate of 1 mL/min, where eluent A was acetonitrile and eluent B was water, both containing 0.1% (v/v) trifluoro acetic acid. The purities of all reported compounds were determined by the percentage of the peak area at 214 nm. Semipreparative HPLC was performed on a Merck-Hitachi device (model LaChrom) equipped with a SP250/21 Nucleosil 100-7 C18 semipreparative column (Machery-Nagel) (length, 250 mm; diameter, 21 mm). The compounds were eluted using the same solvent system as described above, applying a flow rate of 8 mL/min.

General Procedure for the Synthesis of the 1*H*-Imidazol-1ylalkylamines 8, 10. The compounds were prepared from the corresponding ω -bromoalkylphthalimides according to the method described in ref 19 and used without further purification.

2-(1H-Imidazol-1-yl)ethanamine 8. Step A. 2-(2-(1H-Imidazol-1-yl)ethyl)isoindoline-1,3-dione 6. Imidazole (0.57 g, 8.4 mmol, 1.05 equiv), sodium hydride (60% in mineral oil, 0.34 g, 8.4 mmol, 1.05 equiv), and 2-(2-bromoethyl)isoindoline-1,3-dione **4** (2.0 g, 8.0 mmol, 1.0 equiv) yielded 1.5 g (75.0%): MS m/z 242.2 (M + H)⁺, 174.3 ([M - C₃H₃N₂])⁺.

Step B. 2-(1*H*-Imidazol-1-yl)ethanamine 8. 2-(2-(1*H*-Imidazol-1-yl)ethyl)isoindoline-1,3-dione 6 (1.5 g, 6.3 mmol, 1.0 equiv) and hydrazine monohydrate (0.35 g, 6.9 mmol, 1.1 equiv) yielded 0.27 g (38.5%): MS m/z 112.1 (M + H)⁺.

4-(1*H***-Imidazol-1-yl)butanamine 10. Step A. 2-(4-(1***H***-Imidazol-1-yl)butyl)isoindoline-1,3-dione 7. Imidazole (0.57 g, 8.4 mmol, 1.05 equiv), sodium hydride (60% in mineral oil, 0.34 g, 8.4 mmol, 1.05 equiv), and 2-(4-bromobutyl)isoindoline-1,3-dione 5 (2.2 g, 8.0 mmol, 1.0 equiv) yielded 1.7 g (75.0%): MS m/z 270.3 (M + H)⁺, 202.2 ([M - C₃H₃N₂][•])⁺, 160.1 ([M - C₉H₆-NO₂][•])⁺.**

Step B. 4-(1*H*-Imidazol-1-yl)butanamine 10. 2-(4-(1*H*-Imidazol-1-yl)butyl)isoindoline-1,3-dione 7 (1.7 g, 6.3 mmol, 1.0 equiv) and hydrazine monohydrate (0.35 g, 6.9 mmol, 1.1 equiv) yielded 0.29 g (32.7%): MS m/z 140.3 (M + H)⁺.

3-(1H-Imidazol-1-yl)-2-methylpropan-1-amines 17, 18. Step A. 2-((*S***)- And 2-((***R***)-2-Methyl-3-(tetrahydro-2***H***-pyran-2-yloxy)-propyl)isoindoline-1,3-dione 13, 14.** The corresponding 3-bromo-2-methylpropan-1-ol (1.04 g, 6.8 mmol, 10 equiv) **11** and **12**, 3,4dihydro-2*H*-pyran (0.93 mL, 10 mmol, 14.7 equiv), and pyridinium *p*-toluenesulfonate (0.17 g, 0.68 mmol, 1.0 equiv) were dissolved in dry CH₂Cl₂ (50 mL) and stirred at room temperature for 12 h. Et₂O (100 mL) was added; the organic layer was washed twice with brine, dried over Na₂SO₄, and filtered; and the solvent was evaporated. The crude products were used for the next step, whereby, the appropriate 2-(3-bromo-2-methylpropoxy)-tetrahydro-2*H*-pyran **13** and **14** (1.62 g, 6.8 mmol, 10 equiv) was dissolved in dry DMF (40 mL) and the mixture was heated to 80 °C. Potassium phthalimide (1.27 g, 6.8 mmol, 10 equiv) was added in one portion, and the solution was stirred for 24 h at 80 °C. The white precipitate was filtered off, and the organic solvent was evaporated. The resulting oil was used without further purification.

2-((S)-2-Methyl-3-(tetrahydro-2H-pyran-2-yloxy)propyl) isoindoline-1,3-dione 13: yield 1.91 g (92.6%); MS *m*/*z* 304.3 (M + H)⁺, 321.3 (M + NH₄)⁺, 220.3 ([M - C₅H₉O₂][•])⁺.

2-((*R***)-2-Methyl-3-(tetrahydro-2H-pyran-2-yloxy)propyl) isoindoline-1,3-dione 14**: yield 1.85 g (89.7%); MS *m*/*z* 304.3 (M + H)⁺, 321.3 (M + NH₄)⁺, 220.4 ([M - C₅H₉O₂][•])⁺.

Step B. (S)- And (R)-2-Methyl-3-(1,3-dioxoisoindolin-2-yl)propyl Methanesulfonate 15 and 16. The corresponding 2-methyl-3-(tetrahydro-2*H*-pyran-2-yloxy)propyl) isoindoline-1,3-dione **13** and 14 (1.82 g, 6.0 mmol, 10 equiv) and pyridinium p-toluenesulfonate (0.15 g, 0.60 mmol, 1.0 equiv) were dissolved in EtOH (30 mL), heated to 55 °C, and stirred for 3 h. The solvent was evaporated and the crude product was used for the further reaction without purification. The derived 2-(3-hydroxy-2-methylpropyl)-1H-isoindole-1,3(2H)diones (1.31 g, 5.9 mmol, 9.8 equiv) and NEt₃ (1.25 mL, 9.0 mmol, 15 equiv) were dissolved in dry CH₂Cl₂ (40 mL). The mixture was cooled to 0 °C and a solution of mesyl chloride (0.70 mL, 9.0 mmol, 15 equiv) in dry CH₂Cl₂ (10 mL) was added dropwise under an atmosphere of argon. The solution was stirred at 0 °C for 3 h, followed by an additional 12 h at room temperature. The organic layer was washed by means of water, dried over Na₂SO₄, and filtered, and the solvent was evaporated. The crude products were used for the next step without further purification.

(S)-2-Methyl-3-(1,3-dioxoisoindolin-2-yl)propyl methanesulfonate 15: yield 0.94 g (52.6%); MS m/z 298.2 (M + H)⁺.

(*R*)-2-Methyl-3-(1,3-dioxoisoindolin-2-yl)propyl methanesulfonate 16: yield 0.95 g (53.5%); MS m/z 298.1 (M + H)⁺.

Step C. (*S*)- And (*R*)-3-(1*H*-Imidazo-1-yl)-2-methylpropan-1-amine 17 and 18. Starting from the corresponding ω -methanesulfonate-2-methylpropyl-phthalimides 15 and 16, the amines were synthesized as described for the amines 8–10.¹⁹ They were used without further purification.

(S)-3-(1*H*-Imidazol-1-yl)-2-methylpropan-1-amine 17 started from 15 (0.94 g, 3.2 mmol): yield 0.14 g (31.8%); MS m/z 140.2 (M + H)⁺.

(*R*)-3-(1*H*-Imidazol-1-yl)-2-methylpropan-1-amine 18 started from 16 (0.95 g, 3.2 mmol): yield 0.15 g (34.4%); MS m/z 140.4 (M + H)⁺.

(1-((1*H*-midazol-1-yl)methyl)cyclo-1-propyl)methanamine 22. (1-(Aminomethyl)cyclopropyl)methanol 19a was prepared from 1-(aminocarbonyl)-1-cyclopropanecarboxylic acid methyl ester 19 in a manner similar to the method of ref 20. 19 (0.70 g, 4.9 mmol, 1.0 equiv) was dissolved in dry THF (20 mL), and LiAlH₄ (9.8 mL of a 1 M solution in THF, 9.8 mmol, 2.0 equiv) was added under ice cooling. After stirring for 4 h at room temperature, the mixture was heated and stirred under reflux for additional 2 h. The solvent was evaporated, and then water (5 mL) and THF (20 mL) were added. The solvent was removed under reduced pressure, the remaining precipitate was suspended in Et₂O (50 mL), and the suspension was filtered. The residue was washed three times by means of Et₂O (50 mL). After the organic phases were combined, dried over Na₂SO₄, and filtered, and the solvent was removed by reduced pressure: yield 0.40 g (79.6%); MS *m*/z 102.15 (M + H)⁺.

Step A. *tert*-Butyl (1-(Hydroxymethyl)cyclo-1-propyl)methylcarbamate 20. 19a (0.40 g, 3.9 mmol, 1.0 equiv), NEt₃ (1.1 mL, 7.9 mmol, 2.0 equiv), and di-*tert*-butyl dicarbonate (1.0 mL, 4.7 mmol, 1.2 equiv) were dissolved in dry CH₃OH (30 mL) and stirred at 50 °C for 12 h. The solvent was evaporated. The crude product was purified by chromatography using a Chromatotron device (Harrison Research Ltd.), utilizing silica gel plates of a layer thickness of 2 mm and CHCl₃ as eluent: yield 0.28 g (39.5%); ¹H NMR (CDCl₃) δ 0.38–0.50 (m, 4H), 1.42 (s, 9H), 3.09 (s, 2H), 3.36 (s, 2H), 4.85 (br s, 1H); MS *m*/*z* 202.2 (M + H)⁺, 128.1 ([M – C₄H₉O][•])⁺, 101.1 ([M – C₅H₁₀NO][•])⁺.

Step B. *tert***-Butyl (1-((1***H***-Imidazol-1-yl)methyl)cyclo-1-propyl)methylcarbamate 21. 20 (0.28 g, 1.4 mmol, 1.0 equiv) and NEt₃ (0.210 mL, 1.54 mmol, 1.1 equiv) were dissolved in dry CH₂-Cl₂ (20 mL). The mixture was cooled to 0 °C and a solution of** mesyl chloride (0.10 mL, 1.4 mmol, 1.0 equiv) in dry CH₂Cl₂ (5 mL) was added dropwise under an atmosphere of argon. The solution was stirred at 0 °C for 3 h and at room temperature for 12 h. The mixture was diluted with CH2Cl2 (20 mL) and washed once by means of saturated NaHCO₃, 1 N HCl, and water (20 mL for each washing step). The organic layer was dried over Na₂SO₄ and filtered, and the solvent was evaporated. The product was used without further purification for the next step. The alkylation was carried out according to the method described in ref 19 using the mesylated instead of the ω -bromoalkyl compound as the alkylating agent [imidazole (0.14 g, 2.1 mmol, 1.0 equiv), sodium hydride (60% in mineral oil, 0.08 g, 2.1 mmol, 1.0 equiv)]. The compound was purified by means of semipreparative HPLC: yield 0.15 g (43.5%); ¹H NMR (CDCl₃) δ 0.38-0.50 (m, 4H), 1.42 (s, 9H), 3.09 (s, 2H), 3.56 (s, 2H), 7.32-7.51 (m, 2H), 7.65 (s, 1H); MS m/z 252.1 (M + H)⁺, 196.2 ([M - C₄H₉])⁺, 128.1 ([M - $C_7H_{12}N_2]^{\bullet})^+$

Step C. (1-((1*H*-Imidazol-1-yl)methyl)cyclopropyl)methanamine 22. 21 (0.15 g, 0.59 mmol) was dissolved in a solution of HCl in 1,4-dioxane (4 M, 10 mL) and stirred at 0 °C for 1 h. After evaporation of the HCl/1,4-dioxane, the crude product was used without further purification for synthesis of thiourea 55: yield 0.09 g (95.6%); MS m/z 152.2 (M + H)⁺, 84.2 ([M - C₃H₃N₂]⁺)⁺.

3-(1H-Imidazol-1-yl)-N-methylpropan-1-amine 25. Step A. *tert*-Butyl 3-chloropropylmethylcarbamate 24. 3-Chloro-N-methylpropan-1-amine hydrochloride 23 (1.0 g, 6.9 mmol, 1.0 equiv) and di-*tert*-butyl dicarbonate (1.36 mL, 7.6 mmol, 1.1 equiv) were dissolved in a 2:1 mixture of 1,4-dioxane/water (30 mL). Aqueous NaOH (1 M, 10 mL) was added and the solution was stirred for 20 h at room temperature. The organic solvent was removed under reduced pressure and the remaining aqueous layer was washed by means of petroleum ether (2 × 80 mL). After the adjustment of the pH to a value between 8 and 10 by adding a solution of an aqueous solution of HCl (1 M), the aqueous layer was extracted by means of CH₂Cl₂ (3 × 50 mL). The organic layer was dried over Na₂SO₄, filtered, and concentrated to give the crude product, which was used without further purification: yield 0.41 g (28.7%); MS *m*/z 208.2 (M + H)⁺, 230.3 (M + Na)⁺, 150.2 ([M - C₄H₉]•)⁺.

Step B. The alkylation was carried out according to the method described in ref 19 using the ω -chloro instead of the ω -bromoalkyl compound as the alkylating agent. The resulting *tert*-butyl-3-chloropropylmethylcarbamate **24** was reacted with a solution of HCl in 1,4-dioxane (4 M, 20 mL) at 0 °C. After the complete deprotection, the organic solvent was removed under vacuum and the resulting precipitate was used without further purification [imidazole (0.14 g, 2.0 mmol, 1.1 equiv), sodium hydride (60% in mineral oil, 0.07 g, 1.8 mmol, 1.0 equiv), *tert*-butyl-3-chloropropylmethylcarbamate (0.41 g, 2.0 mmol, 1.1 equiv)]: yield 0.22 g (99.8%); MS m/z 140.3 (M + H)⁺.

General Procedure for the Synthesis of the 1-(1*H*-Imidazol-1-ylalkyl)-*n*-aryl/alkylthioureas 26–50, 52–59. All syntheses were performed using a Büchi Synchor parallel synthesizing device. Thereby, a typical reaction batch was performed by utilizing the isothiocyanate (4.0 mmol, 1.0 equiv) and the corresponding (1*H*imidazol-1-yl)alkyl-1-amine (4.0 mmol, 1.0 equiv) in absolute EtOH (10 mL). After shaking for 2 h under reflux, the solvent was evaporated and the resulting solid was recrystallized from EtOH.

1-(3-(1*H***-Imidazol-1-yl)propyl)-3-methylthiourea 26:** yield 0.59 g (73.9%); mp 122–122.5 °C; ¹H NMR δ 1.85–1.95 (m, 2H), 2.84 (s, 3H), 3.31–3.35 (m, 2H), 3.95–3.97 (m, 2H), 6.85 (d, J = 1.0 Hz, 1H), 7.15 (s, 1H), 7.42 (br s, 2H), 7.65 (s, 1H); MS m/z 199.1 (M + H)⁺, 221.3 (M + Na)⁺, 131.0 ([M – C₃H₃N₂][•])⁺; ESI-FTICR-MS m/z 221.08304 ([M + Na]⁺, calcd for C₈H₁₄N₄SNa⁺ 221.08313); HPLC (214 nm) $t_{\rm R}$ 1.89 min (100%).

1-(3-(1*H***-Imidazol-1-yl)propyl)-3-butylthiourea 27:** yield 0.79 g (28.0%); mp 135.6–136.0 °C; ¹H NMR δ 0.82–0.90 (m, 3H), 1.21–1.51 (m, 4H), 1.84–1.98 (m, 2H), 3.17–3.33 (m, 4H), 3.92–3.99 (m, 2H), 6.87 (s, 1H), 7.15 (s, 1H), 7.36–7.38 (m, 2H), 7.65 (s, 1H); MS *m*/*z* 241.1 (M + H)⁺, 173.1 ([M – C₃H₃N₂][•])⁺; ESI-FTICR-MS *m*/*z* 241.14805 ([M + H]⁺, calcd for C₁₁H₂₁N₄S⁺ 241.14814); HPLC (214 nm) *t*_R 15.15 min (98.6%).

1-(3-(1*H***-Imidazol-1-yl)propyl)-3-***tert***-butylthiourea 28:** yield 0.48 g (49.6%); mp 147.0–147.5 °C; ¹H NMR δ 1.36 (s, 9H), 1.85–1.95 (m, 2H), 3.22–3.32 (m, 2H), 3.88–3.95 (m, 2H), 6.85 (s, 1H), 7.11–7.13 (m, 1H), 7.21–7.29 (m, 2H), 7.65 (s, 1H); MS *m*/*z* 241.1 (M + H)⁺, 173.1 ([M – C₃H₃N₂][•])⁺; ESI-FTICR-MS *m*/*z* 263.13002 ([M + Na]⁺, calcd for C₁₂H₂₀N₄SNa⁺ 263.13008); HPLC (214 nm) *t*_R 14.21 min (97.8%).

1-(3-(1*H***-Imidazol-1-yl)propyl)-3-isopropylthiourea 29:** yield 0.46 g (50.8%); mp 88.6–89.1 °C; ¹H NMR δ 1.00–1.06 (m, 6H), 1.85–1.89 (m, 2H), 3.28–3.41 (m, 3H), 3.90–3.94 (m, 2H), 6.85 (s, 1H), 7.15 (s, 1H), 7.16–7.25 (m, 2H), 7.65 (s, 1H); MS *m/z* 227.3 (M + H)⁺, 159.2 ([M – C₃H₃N₂]•)⁺; ESI-FTICR-MS *m/z* 249.11429 ([M + Na]⁺, calcd for C₁₀H₁₉N₄SNa⁺ 249.11443); HPLC (214 nm) *t*_R 4.57 min (96.4%).

1-(Bicyclo[2.2.1]hept-5-en-2-yl)-3-(3-(1H-imidazol-1-yl)-propyl)thiourea 30: yield 0.44 g (39.8%); mp 141.5–142.1 °C; ¹H NMR δ 1.22–1.25 (m, 1H), 1.40–1.45 (m, 1H), 1.52–1.56 (m, 1H), 1.91–1.95 (m, 2H), 2.74 (s, 1H), 2.80 (s, 1H), 3.29–3.35 (m, 3H), 3.94–3.97 (m, 2H), 6.04–6.06 (m, 1H), 6.13–6.15 (m, 1H), 6.85 (s, 1H), 7.15 (s, 1H), 7.26 (br s, 1H), 7.53 (br s, 1H), 7.65 (s, 1H); MS *m*/*z* 277.0 (M + H)⁺, 299.3 (M + Na)⁺, 209.9 ([M – C₃H₃N₂]*)+; ESI-FTICR-MS *m*/*z* 299.12991 ([M + Na]⁺, calcd for C₁₄H₂₀N₄SNa⁺ 299.13008); HPLC (214 nm) *t*_R 21.04 min (98.3%).

1-(3-(1*H***-Imidazol-1-yl)propyl)-3-cyclohexylthiourea 31:** yield 1.05 g (98.5%); mp 95.4–96.3 °C; ¹H NMR δ 0.97–1.27 (m, 5H), 1.48–1.91 (m, 6H), 3.33–3.41 (m, 4H) 3.87–3.94 (m, 2H), 6.85 (s, 1H), 7.15 (s, 1H), 7.27–7.53 (m, 2H), 7.65 (s, 1H); MS *m/z* 267.2 (M + H)⁺, 199.2 ([M - C₃H₃N₂]•)+; ESI-FTICR-MS *m/z* 267.16389 ([M + H]⁺, calcd for C₁₃H₂₃N₄⁺ 267.16379); HPLC (214 nm) *t*_R 18.78 min (98.5%).

1-(3-(1H-Imidazol-1-yl)propyl)-3-benzylthiourea 32: yield 0.66 g (59.9%); mp 127.0–128.0 °C; ¹H NMR δ 1.85–1.95 (m, 2H), 3.28–3.40 (m, 2H), 3.92–3.93 (m, 2H), 4.61 (s, 2H), 6.85 (s, 1H), 7.15 (s, 1H), 7.19–7.35 (m, 5H), 7.52–7.57 (m, 2H), 7.85 (s, 1H); MS *m*/*z* 275.3 (M + H)⁺, 207.1 ([M – C₃H₃N₂]*)+; ESI-FTICR-MS *m*/*z* 297.11456 ([M + Na]*, calcd for C₁₄H₁₈N₄SNa* 297.11443); HPLC (214 nm) *t*_R 20.61 min (97.5%).

1-(3-(1*H***-Imidazol-1-yl)propyl)-3-phenylthiourea 33:** yield 0.78 g (75.0%); mp 166.5–167.0 °C; ¹H NMR δ 1.95–2.05 (m, 2H), 3.39–3.44 (m, 2H), 3.92–4.01 (m, 2H), 6.85 (s, 1H), 7.04–7.09 (m, 1H) 7.15 (s, 1H), 7.25–7.30 (m, 2H), 7.31–7.35 (m, 2H), 7.61 (s, 1H), 7.77 (br s, 1H), 9.46 (br s, 1H); MS *m*/*z* 261.1 (M + H)⁺, 193.2 ([M – C₃H₃N₂][•])⁺; ESI-FTICR-MS *m*/*z* 283.09865 ([M + Na]⁺, calcd for C₁₂H₁₆N₄SNa⁺ 283.09861); HPLC (214 nm) *t*_R 14.00 min (97.4%).

1-(3-(1H-Imidazol-1-yl)propyl)-3-naphthalen-1-ylthiourea 34: yield 1.06 g (85.4%); mp 143.2–143.9 °C; ¹H NMR δ 1.95–2.05 (m, 2H), 3.40–3.45 (m, 2H), 3.92–4.01 (m, 2H), 6.86 (s, 1H), 7.13 (s, 1H), 7.44–7.64 (m, 6H), 7.84–7.88 (m, 2H), 7.94–7.97 (m, 1H), 9.63 (br s, 1H); MS *m*/*z* 311.3 (M + H)⁺, 243.4 ([M – C₃H₃N₂][•])⁺; ESI-FTICR-MS *m*/*z* 333.11410 ([M + Na]⁺, calcd for C₁₇H₁₈N₄SNa⁺ 333.11443); HPLC (214 nm) *t*_R 22.07 min (98.6%).

1-(3-(1*H***-Imidazol-1-yl)propyl)-3-(4-methylphenyl)thiourea 35:** yield 1.07 g (97.5%); mp 159.4–160.3 °C; ¹H NMR δ 1.95–2.05 (m, 2H), 2.23 (s, 3H), 3.40–3.45 (m, 2H), 3.92–4.01 (m, 2H), 6.86 (s, 1H), 7.07–7.09 (m, 2H), 7.13 (s, 1H), 7.17–7.19 (m, 2H), 7.59 (s, 1H), 7.64 (br s, 1H), 9.35 (br s, 1H); MS *m*/*z* 275.2 (M + H)⁺, 207.2 ([M – C₃H₃N₂][•])⁺; ESI-FTICR-MS *m*/*z* 297.11419 ([M + Na]⁺, calcd for C₁₄H₁₈N₄SNa⁺ 297.11443); HPLC (214 nm) *t*_R 19.72 min (97.4%).

1-(3-(1*H***-Imidazol-1-yl)propyl)-3-(4-ethylphenyl)thiourea 36:** yield 0.83 g (72.2%); mp 100.0–100.5 °C; ¹H NMR δ 1.16–1.18 (m, 3H), 1.95–2.02 (m, 2H), 2.55–2.59 (m, 2H), 3.41–3.45 (m, 2H), 3.97–4.00 (m, 2H), 6.85 (s, 1H), 7.14–7.17 (m, 3H), 7.23–7.25 (m, 2H), 7.63 (s, 1H), 7.70 (br s, 1H), 9.40 (br s, 1H); MS *m*/*z* 289.3 (M + H)⁺, 221.1 ([M – C₃H₃N₂][•])⁺; ESI-FTICR-MS *m*/*z* 311.12976 ([M + Na]⁺, calcd for C₁₅H₂₀N₄SNa⁺ 311.13008); HPLC (214 nm) *t*_R 22.62 min (99.1%).

1-(3-(1H-Imidazol-1-yl)propyl)-3-(4-fluorophenyl)thiourea 37: yield 0.79 g (71.1%); mp 147.0–148.0 °C; ¹H NMR δ 1.95–2.05

(m, 2H), 3.39-3.40 (m, 2H), 3.90-4.05 (m, 2H), 6.85 (s, 1H), 7.05-7.15 (m, 3H), 7.32-7.41 (m, 2H), 7.60 (s, 1H), 7.76 (br s, 1H), 9.41 (br s, 1H); MS m/z 279.3 (M + H)⁺, 211.2 ([M - C₃H₃N₂][•])⁺; ESI-FTICR-MS m/z 301.08915 ([M + Na]⁺, calcd for C₁₃H₁₅N₄SFNa⁺ 301.08936); HPLC (214 nm) $t_{\rm R}$ 16.76 min (97.3%).

1-(3-(1*H***-Imidazol-1-yl)propyl)-3-(4-(dimethylamino)phenyl)thiourea 38:** yield 0.75 g (62.1%); mp 146.5–147.0 °C; ¹H NMR δ 1.91–2.02 (m, 2H), 2.93 (s, 6H), 3.39–3.42 (m, 2H), 3.93– 4.01 (m, 2H), 6.67–6.70 (m, 2H), 6.92 (s, 1H), 7.05–7.10 (m, 2H), 7.15 (s, 1H), 7.40 (br s, 1H), 7.66 (s, 1H), 9.22 (s, 1H); MS *m*/*z* 304.2 (M + H)⁺, 236.0 ([M – C₃H₃N₂]•)⁺; ESI-FTICR-MS *m*/*z* 326.14070 ([M + Na]⁺, calcd for C₁₅H₂₁N₅SNa⁺ 326.14098); HPLC (214 nm) *t*_R 9.15 min (98.2%).

1-(3-(1*H***-Imidazol-1-yl)propyl)-3-(4-nitrophenyl)thiourea 39:** yield 0.86 g (70.2%); mp 165.0–166.0 °C; ¹H NMR δ 1.91–2.05 (m, 2H), 3.30–3.51 (m, 2H), 3.95–4.05 (m, 2H), 6.85 (s, 1H), 7.15 (s, 1H), 7.62 (s, 1H), 7.73–7.76 (m, 2H), 8.12–8.13 (m, 2H), 8.31 (br s, 1H), 10.12 (br s, 1H); MS *m*/*z* 306.2 (M + H)⁺, 237.9 ([M - C₃H₃N₂][•])⁺; ESI-FTICR-MS *m*/*z* 328.08369 ([M + Na]⁺, calcd for C₁₃H₁₅N₅O₂SNa⁺ 328.08386); HPLC (214 nm) *t*_R 22.30 min (100%).

1-(3-(1*H***-Imidazol-1-yl)propyl)-3-(4-acetylphenyl)thiourea 40:** yield 0.98 g (81.2%); mp 170.0–171.0 °C; ¹H NMR δ 1.91–2.12 (m, 2H), 2.48 (s, 3H), 3.20–3.52 (m, 2H), 3.92–4.11 (m, 2H), 6.85 (s, 1H), 7.15 (s, 1H), 7.51–7.65 (m, 3H), 7.81–7.92 (m, 2H), 8.02–8.09 (m, 1H), 9.81 (br s, 1H); MS *m*/z 303.2 (M + H)⁺, 235.1 ([M – C₃H₃N₂][•])⁺; ESI-FTICR-MS *m*/z 325.10906 ([M + Na]⁺, calcd for C₁₅H₁₈N₄SNa⁺ 325.10935); HPLC (214 nm) *t*_R 18.58 min (99.8%).

1-(3-(1*H***-Imidazol-1-yl)-propyl)-3-(4-methylsulfanyl-phenyl)thiourea 41:** yield 1.22 g (99.5%); mp 140.0–140.5 °C; ¹H NMR δ 1.98–2.05 (m, 2H), 2.48 (s, 3H), 3.22–3.52 (m, 2H), 3.95– 4.05 (m, 2H), 6.85 (s, 1H), 7.16–7.33 (m, 5H), 7.63 (s, 1H), 7.76 (br s, 1H), 9.44 (br s, 1H); MS *m*/*z* 307.2 (M + H)⁺, 239.2 ([M – C₃H₃N₂])⁺; ESI-FTICR-MS *m*/*z* 329.08653 ([M + Na]⁺, calcd for C₁₄H₁₈N₄S₂Na⁺ 329.08650); HPLC (214 nm) *t*_R 22.18 min (97.8%).

1-(3-(1*H***-Imidazol-1-yl)propyl)-3-(4-(benzyloxy)phenyl)thiourea 42:** yield 0.51 g (34.8%); mp 123.4–123.9 °C; ¹H NMR δ (CDCl₃) 2.03–2.10 (m, 2H), 3.58–3.63 (m, 2H), 3.94–3.97 (m, 2H), 5.04 (s, 2H), 6.01 (s, 1H), 6.81 (br s, 1H), 6.90–6.96 (m, 4H), 7.11–7.19 (m, 2H), 7.31–7.40 (m, 5H), 7.92 (s, 1H); MS *m*/*z* 367.2 (M + H)⁺, 299.3 ([M – C₃H₃N₂][•])⁺; ESI-FTICR-MS *m*/*z* 389.14028 ([M + Na]⁺, calcd for C₂₀H₂₂ON₄SNa⁺ 389.14065); HPLC (214 nm) *t*_R 23.73 min (98.2%).

1-(4-Ethoxy-phenyl)-3-(3-(1*H***-imidazol-1-yl)-propyl)thiourea 43:** yield 0.87 g (71.9%); mp 126.0–126.5 °C; ¹H NMR δ 1.28–1.32 (m, 3H), 1.94–2.01 (m, 2H), 3.41–3.45 (m, 2H), 3.93–4.02 (m, 4H), 6.85 (s, 1H), 7.16–7.33 (m, 5H), 7.63 (s, 1H), 7.76 (br s, 1H), 9.44 (br s, 1H); MS *m*/*z* 305.2 (M + H)⁺, 237.2 ([M – C₃H₃N₂])⁺; ESI-FTICR-MS *m*/*z* 327.12504 ([M + Na]⁺, calcd for C₁₅H₂₀ON₄SNa⁺ 327.12500); HPLC (214 nm) *t*_R 20.64 min (98.4%).

1-(3-(1*H***-Imidazol-1-yl)propyl)-3-(4-methoxyphenyl)thiourea 44:** yield 0.87 g (75.3%); mp 125.0–125.5 °C; ¹H NMR δ 1.87–2.00 (m, 2H), 3.29–3.44 (m, 2H), 3.70 (s, 3H), 3.91–4.02 (m, 2H), 6.72–6.93 (m, 3H), 7.11–7.21 (m, 3H), 7.50 (s, 1H), 7.61 (s, 1H), 9.21 (s, 1H); MS *m*/*z* 291.1 (M + H)⁺, 223.2 ([M – C₃H₃N₂]•)⁺; ESI-FTICR-MS *m*/*z* 313.10913 ([M + Na]⁺, calcd for C₁₄H₁₈ON₄SNa⁺ 313.10935); HPLC (214 nm) *t*_R 22.83 min (97.3%).

1-(3-(1*H***-Imidazol-1-yl)propyl)-3-(benzo[***d***][1,3]dioxol-6-yl)thiourea 45: yield 0.25 g (20.7%); mp 115.0–115.6 °C; ¹H NMR \delta 1.99–2.03 (m, 2H), 3.42–3.44 (m, 2H), 4.08–4.15 (m, 2H), 6.01 (s, 2H), 6.67 (d, J = 6.6 Hz, 1H), 6.90 (d, J = 8.3 Hz, 1H), 6.95 (s, 1H), 7.25 (s, 1H), 7.45 (s, 1H), 7.68 (br s, 1H), 8.32 (br s, 1H), 9.38 (br s, 1H); MS** *m***/***z* **305.2 (M + H)⁺, 237.2 ([M – C₃H₃N₂][•])⁺; ESI-FTICR-MS** *m***/***z* **305.10642 ([M + H]⁺, calcd for C₁₄H₁₇O₂N₄S⁺ 305.10667); HPLC (214 nm)** *t***_R 13.71 min (96.6%).**

1-(3-(1*H***-Imidazol-1-yl)propyl)-3-(3-methoxyphenyl)thiourea 46:** yield 0.86 g (73.9%); mp 89.5–90.0 °C; ¹H NMR δ 1.99–2.05 (m, 2H), 3.42–3.46 (m, 2H), 3.71 (s, 3H), 3.97–4.01 (m,

2H), 6.67 (dd, J = 5.8 Hz, 2.5 Hz, 1H), 6.85–6.90 (m, 2H), 6.99– 7.07 (m, 1H), 7.15–7.25 (m, 2H), 7.62 (s, 1H), 7.86 (br s, 1H), 9.51 (s, 1H); MS m/z 291.1 (M + H)⁺, 223.2 ([M – C₃H₃N₂][•])⁺; ESI-FTICR-MS m/z 313.10922 ([M + Na]⁺, calcd for C₁₄H₁₈ON₄-SNa⁺ 313.10935); HPLC (214 nm) $t_{\rm R}$ 16.40 min (98.5%).

1-(3-(1*H***-Imidazol-1-yl)propyl)-3-(3,4-dimethoxybenzyl)thiourea 47:** yield 0.38 g (28.5%); mp:143.5–144.5 °C; ¹H NMR δ ¹H NMR δ 1.93–1.99 (m, 2H), 3.42–3.46 (m, 2H), 3.71 (s, 3H), 3.72 (s, 3H), 3.96–3.99 (m, 2H), 4.72 (s, 2H), 6.75–6.77 (m, 1H), 6.89–6.90 (m, 2H), 6.95 (s, 1H), 7.16 (s, 1H), 7.59 (br s, 1H), 7.62 (s, 1H), 9.33 (s, 1H); MS *m*/*z* 335.3 (M + H)⁺, 267.2 ([M – C₃H₃N₂][•])⁺; ESI-FTICR-MS *m*/*z* 357.113546 ([M + Na]⁺, calcd for C₁₆H₂₂O₂N₄SNa⁺ 357.13556); HPLC (214 nm) *t*_R 19.41 min (97.3%).

1-(3-(1*H***-Imidazol-1-yl)propyl)-3-(2,3-dihydrobenzo[***b***][1,4]dioxin-7-yl)thiourea 48: yield 0.17 g (13.1%); mp 103.0–103.5 °C; ¹H NMR \delta 1.94–1.99 (m, 2H), 3.33–3.41 (m, 2H), 3.95– 3.98 (m, 2H), 4.19–4.26 (m, 4H), 6.68–6.71 (m, 1H), 6.78–6.80 (m, 1H), 6.86–6.87 (m, 2H), 7.16 (s, 1H), 7.63 (s, 2H), 9.28 (s, 1H); MS** *m***/***z* **319.3 (M + H)⁺, 251.3 ([M – C₃H₃N₂]•)⁺; ESI-FTICR-MS** *m***/***z* **341.10400 ([M + Na]⁺, calcd for C₁₅H₁₈O₂N₄SNa⁺ 341.10426); HPLC (214 nm)** *t***_R 16.03 min (97.1%).**

1-(3-(1*H***-Imidazol-1-yl)propyl)-3-(3,5-dimethoxyphenyl)thiourea 49:** yield 1.18 g (92.4%); mp 142.0–143.0 °C; ¹H NMR δ 1.95–2.01 (m, 2H), 3.42–3.49 (m, 2H), 3.61 (s, 6H), 3.97–4.00 (m, 2H), 6.25 (s, 1H), 6.59 (s, 2H), 6.87 (s, 1H), 7.17 (s, 1H), 7.62 (s, 1H), 7.83 (s, 1H), 9.47 (s, 1H); MS *m*/*z* 321.2 (M + H)⁺, 253.3 ([M - C₃H₃N₂]•)⁺; ESI-FTICR-MS *m*/*z* 343.12010 ([M + Na]⁺, calcd for C₁₅H₂₀O₂N₄SNa⁺ 343.11992); HPLC (214 nm) *t*_R 21.12 min (97.2%).

1-(3-(1*H***-Imidazol-1-yl)propyl)-3-(2,4-dimethoxyphenyl)thiourea 50:** yield 1.25 g (97.6%); mp 120.0–120.5 °C; ¹H NMR δ 1.95–2.01 (m, 2H), 3.42–3.49 (m, 2H), 3.74 (s, 3H), 3.75 (s, 3H), 3.97–3.99 (m, 2H), 6.48 (dd, J = 6.1 Hz, 2.4 Hz, 1H), 6.60 (s, 1H), 6.87 (s, 1H), 7.15 (s, 1H), 7.31 (d, J = 6.1 Hz, 1H), 7.47 (br s, 1H), 7.61 (s, 1H), 8.73 (s, 1H); MS m/z 321.2 (M + H)⁺, 253.2 ([M – C₃H₃N₂]*)+; ESI-FTICR-MS m/z 343.12011 ([M + Na]⁺, calcd for C₁₅H₂₀O₂N₄SNa⁺ 343.11992); HPLC (214 nm) $t_{\rm R}$ 17.71 min (99.0%).

1-(3-(1*H***-Imidazol-1-yl)propyl)-3-(3,4-dimethoxyphenyl)urea 51.** 3,4-Dimethoxyphenyl isocyanate (0.72 g, 4.0 mmol, 1.0 equiv) was added to a solution of 3-(1*H*-imidazol-1-yl)propan-1amine (0.48 mL, 4.0 mmol, 1.0 equiv) in dry acetonitrile (50 mL). The mixture was stirred at room temperature for 8 h. After removing the solvent, the crude product was recrystallized from EtOH: yield 0.59 g (48.6%); mp 114.5–115.0 °C; ¹H NMR δ 1.81–1.86 (m, 2H), 3.00–3.05 (m, 2H), 3.66 (s, 3H), 3.69 (s, 3H), 3.95–3.98 (m, 2H), 6.09–6.12 (m, 1H), 6.79 (s, 2H), 6.88 (s, 1H), 7.14 (s, 1H), 7.17 (s, 1H), 7.62 (s, 1H), 8.24 (s, 1H); MS *m*/*z* 305.0 (M + H)⁺, 237.3 ([M – C₃H₃N₂][•])⁺; ESI-FTICR-MS *m*/*z* 327.14255 ([M + Na]⁺, calcd for C₁₅H₂₀O₃N₄SNa⁺ 327.14276); HPLC (214 nm) *t*_R 11.73 min (97.1%).

1-(3-(1*H***-Imidazol-1-yl)propyl)-3-(3,4,5-trimethoxyphenyl)thiourea 52:** yield 1.30 g (92.5%); mp 124.5–125.5 °C; ¹H NMR δ 1.94–2.01 (m, 2H), 3.41–3.52 (m, 2H), 3.62 (s, 3H), 3.73 (s, 6H), 3.97–4.00 (m, 2H), 6.65 (s, 2H), 6.87 (s, 1H), 7.17 (s, 1H), 7.63 (s, 1H), 7.73 (br s, 1H), 9.41 (s, 1H); MS *m*/*z* 351.3 (M + H)⁺, 283.2 ([M - C₃H₃N₂]*)⁺; ESI-FTICR-MS *m*/*z* 373.12977 ([M + Na]⁺, calcd for C₁₆H₂₂O₃N₄SNa⁺ 373.13048); HPLC (214 nm) *t*_R 16.85 min (98.6%).

1-(3-(1*H***-Imidazol-1-yl)propyl)-3-(3,4-dimethoxyphenyl)thiourea 53:** yield 0.66 g (51.3%); mp 160.0–161.0 °C; ¹H NMR δ 1.93–1.99 (m, 2H), 3.42–3.46 (m, 2H), 3.71 (s, 3H), 3.72 (s, 3H), 3.96–3.99 (m, 2H), 6.75–6.77 (m, 1H), 6.89–6.90 (m, 2H), 6.95 (s, 1H), 7.16 (s, 1H), 7.59 (br s, 1H), 7.62 (s, 1H), 9.33 (s, 1H); MS *m*/*z* 321.2 (M + H)⁺, 253.3 ([M – C₃H₃N₂]*); ESI-FTICR-MS *m*/*z* 343.12009 ([M + Na]⁺, calcd for C₁₅H₂₀O₂N₄SNa⁺ 343.11992); HPLC (214 nm) *t*_R 14.00 min (99.8%).

1-(2-(1*H***-Imidazol-1-yl)ethyl)-3-(3,4-dimethoxyphenyl)thiourea 54** started from **8** (0.27 g, 2.4 mmol) and 3,4-dimethoxyphenyl isothiocyanate (0.47 g, 2.4 mmol): yield 0.73 g (59.6%); mp

157.5–159.0 °C; ¹H NMR δ 3.69 (s, 3H), 3.72 (s, 3H), 3.74–3.78 (m, 2H), 4.16–4.19 (m, 2H), 6.68–6.70 (m, 1H), 6.85–6.89 (m, 3H), 7.13 (s, 1H), 7.47 (br s, 1H), 7.59 (s, 1H), 9.48 (s, 1H); MS *m*/*z* 307.2 (M + H)⁺, 239.1 ([M – C₃H₃N₂]•)⁺; ESI-FTICR-MS *m*/*z* 329.10398 ([M + Na]⁺, calcd for C₁₄H₁₈O₂N₄SNa⁺ 329.10426); HPLC (214 nm) *t*_R 11.12 min (99.4%).

1-(4-(1*H***-Imidazol-1-yl)butyl)-3-(3,4-dimethoxyphenyl)thiourea 55** started from **10** (0.29 g, 2.1 mmol) and 3,4-dimethoxyphenyl isothiocyanate (0.41 g, 2.1 mmol): yield 1.07 g (79.9%); mp 114.5–116.0 °C; ¹H NMR δ 1.42–1.51 (m, 2H), 1.63–1.71 (m, 2H), 3.42–3.51 (m, 2H), 3.69 (s, 3H), 3.72 (s, 3H), 3.95–4.01 (m, 2H), 6.68–6.70 (m, 1H), 6.85–6.89 (m, 1H), 6.91–6.98 (m, 2H), 7.13 (s, 1H), 7.47 (br s, 1H), 7.59 (s, 1H), 9.48 (s, 1H); MS *m*/*z* 335.3 (M + H)⁺, 267.1 ([M – C₃H₃N₂]*)+; ESI-FTICR-MS *m*/*z* 357.13563 ([M + Na]⁺, calcd for C₁₆H₂₃O₂N₄SNa⁺ 357.13556); HPLC (214 nm) *t*_R 16.47 min (99.1%).

1-((*R***)-3-(1***H***-Imidazol-1-yl)-2-methylpropyl)-3-(3,4-dimethoxyphenyl)thiourea 56** started from 18 (0.94 g, 3.2 mmol) and 3,4-dimethoxyphenyl isothiocyanate (0.63 g, 3.2 mmol): yield 0.57 g (53.8%); mp 155.0–157.5 °C; the purification was performed by means of semipreparative HPLC; ¹H NMR δ 0.83 (d, *J* = 6.6 Hz, 3H), 2.31–2.39 (m, 1H), 3.37–3.43 (m, 2H), 3.71 (s, 3H), 3.72 (s, 3H), 4.04–4.08 (m, 1H), 4.16–4.18 (m, 1H), 6.78 (d, *J* = 8.5 Hz, 1H), 6.89 (d, *J* = 8.5 Hz, 1H), 6.99 (s, 1H), 7.67 (s, 1 H), 7.75 (s, 2H), 9.11 (s, 1H), 9.50 (s, 1H); MS *m*/*z* 335.15345 ([M + H]⁺, calcd for C₁₆H₂₃O₂N₄S⁺ 335.15362); HPLC (214 nm) *t*_R 19.13 min (97.9%).

1-((S)-3-(1*H***-Imidazol-1-yl)-2-methylpropyl)-3-(3,4-dimethoxyphenyl)thiourea 57** started from **17** (0.95 g, 3.2 mmol) and 3,4dimethoxyphenyl isothiocyanate (0.63 g, 3.2 mmol): yield 0.53 g (49.4%); mp 150.5–151.5 °C; the purification was performed by means of semipreparative HPLC; ¹H NMR δ 0.83 (d, *J* = 6.6 Hz, 3H), 2.36–2.41 (m, 1H), 3.37–3.43 (m, 2H), 3.71 (s, 3H), 3.72 (s, 3H), 4.04–4.08 (m, 1H), 4.16–4.18 (m, 1H), 6.77 (d, *J* = 8.5 Hz, 1H), 6.89 (d, *J* = 8.5 Hz, 1H), 6.99 (s, 1H), 7.67 (s, 1 H), 7.75 (s, 2H), 9.11 (s, 1H), 9.50 (s, 1H); MS *m*/*z* 335.4 (M + H)⁺, 267.2 ([M – C₃H₃N₂]•)⁺; ESI-FTICR-MS *m*/*z* 335.15344 ([M + H]⁺, calcd for C₁₆H₂₃O₂N₄S⁺ 335.15362); HPLC (214 nm) *t*_R 17.93 min (98.1%).

1-((1-((1*H***-Imidazol-1-yl)methyl)cyclopropyl)methyl)-3-(3,4dimethoxyphenyl)thiourea 58** started from **22** (0.09 g, 0.59 mmol) and 3,4-dimethoxyphenyl isothiocyanate (0.12 g, 0.59 mmol): yield 0.08 g (37.5%); mp 166.5–168.5 °C; the purification was performed by means of semipreparative HPLC; ¹H NMR (rotamers) δ 0.69– 0.73 (m, 4H), 1.85–1.86 (m, 1.3H), 2.11–2.21 (m, 2.7H), 3.35– 3.40 (m, 2H), 3.43–3.44 (m, 2H), 3.68–3.71 (4 × s, 12H), 4.13 (s, 2H), 4.94 (s, 2H), 6.75–6.78 (m, 2H), 6.84–6.89 (m, 2H), 6.98 (s, 2H), 7.48–7.49 (m, 2H), 7.60–7.61 (m, 2H), 7.65 (s, 1H), 7.78 (s, 1H), 8.82 (s, 1H), 9.07 (s, 1H), 9.36 (s, 1H), 9.43 (s, 1H); MS m/z 347.2 (M + H)⁺, 279.2 ([M – C₃H₃N₂]•)⁺, 137.5 ([M – C₉H₁₃N₄S]•)⁺; ESI-FTICR-MS m/z 347.15352 ([M + H]⁺, calcd for C₁₇H₂₃O₂N₄S⁺ 347.15362); HPLC (214 nm) $t_{\rm R}$ 19.85 min (97.8%).

1-(3-(1*H***-Imidazol-1-yl)propyl)-3-(3,4-dimethoxyphenyl)-1methylthiourea 59** started from **25** (0.220 g, 1.04 mmol, 1.0 equiv), 3,4-dimethoxyphenyl isothiocyanate (0.200 g, 1.04 mmol, 1.0 equiv), and NEt₃ (0.280 mL, 2.08 mmol, 2.0 equiv). The purification was performed by means of flash-chromatography using silica gel and a CHCl₃/CH₃OH gradient as eluating system: yield 0.12 g (34.5%); mp 155.1–156.3 °C; ¹H NMR (CDCl₃) δ 2.17–2.21 (m, 2H), 3.08 (s, 3H), 3.83 (s, 3H), 3.84 (s, 3H), 3.94–3.98 (m, 2H), 4.03–4.07 (m, 2H), 6.76–6.80 (m, 2H), 6.81 (s, 1H), 6.89 (s, 1H), 7.04 (s, 1H), 7.14 (s, 1H), 7.52 (s, 1H); MS *m*/z 335.4 (M + H)⁺, 267.2 ([M – C₃H₃N₂]•)⁺; ESI-FTICR-MS *m*/z 357.13522 ([M + Na]⁺, calcd for C₁₆H₂₂O₂N₄SNa⁺ 357.13556); HPLC (214 nm) *t*_R 15.05 min (97.5%).

General Procedure for the Synthesis of the N-(3-(1H-Imidazol-1-yl)propyl)benzo[d]thiazol-2-amines 66–69. 1H-Imidazole-1-propanamine 9 was reacted with the corresponding 2-chlorobenzo[d]thiazoles in n-butanol for 24 h at reflux as

described in ref 21. After removing the solvent and recrystallization from CH_3OH , **66–69** were yielded.

N-(**3**-(**1***H*-imidazol-1-yl)propyl)benzo[*d*]thiazol-2-amine **66** started from **9** (1.50 mL, 12.6 mmol, 1.0 equiv) and 2-chlorobenzo-[*d*]thiazole **63** (1.86 mL, 13.9 mmol, 1.1 equiv): yield 0.28 g (8.6%); mp 89.6–90.5 °C; ¹H NMR δ 1.98–2.02 (m, 2H), 3.27– 3.34 (m, 2H), 4.03–4.06 (m, 2H), 6.89 (s, 1H), 6.98–7.00 (m, 1H), 7.18–7.21 (m, 2H), 7.35–7.37 (m, 1H), 7.65 (s, 2H), 8.06 (s, 1H); MS *m*/*z* 259.4 (M + H)⁺, 191.3 ([M – C₃H₃N₂][•])⁺; ESI-FTICR-MS *m*/*z* 281.08301 ([M + Na]⁺, calcd for C₁₃H₁₄N₄SNa⁺ 281.08313); HPLC (214 nm) *t*_R 9.71 min (99.1%).

N-(3-(1*H*-Imidazol-1-yl)propyl)-6-chlorobenzo[*d*]thiazol-2amine 67 started from 9 (0.26 mL, 2.2 mmol, 1.0 equiv) and 2,5dichlorobenzo[*d*]thiazole 64 (0.500 g, 2.42 mmol, 1.1 equiv): yield 0.068 g (9.7%); mp 108.2–108.9 °C; ¹H NMR δ 1.98–2.02 (m, 2H), 3.27–3.34 (m, 2H), 4.03–4.06 (m, 2H), 6.90 (s, 1H), 7.20– 7.22 (m, 2H), 7.32–7.37 (m, 1H), 7.65 (s, 1H), 7.77 (s, 1H), 8.20 (s, 1H); MS *m*/*z* 293.3 (M + H)⁺; ESI-FTICR-MS *m*/*z* 293.06204 ([M + H]⁺, calcd for C₁₃H₁₄N₄SCl⁺ 293.06222); HPLC (214 nm) *t*_R 21.29 min (98.2%).

N-(3-(1*H*-Imidazol-1-yl)propyl)-6-methoxybenzo[*d*]thiazol-2amine 68 started from 9 (0.27 mL, 2.3 mmol, 1.0 equiv) and 2-chloro-5-methoxybenzo[*d*]thiazole 65 (0.50 g, 2.5 mmol, 1.1 equiv): yield 0.060 g (9.0%); mp 122.8−123.6 °C; ¹H NMR δ 1.98−2.02 (m, 2H), 3.27−3.34 (m, 2H), 3.69 (s, 3H), 4.03−4.06 (m, 2H), 6.77−6.78 (m, 1H), 6.87 (s, 1H), 7.17 (s, 1H), 7.23− 7.26 (m, 2H), 7.63 (s, 1H), 7.81 (s, 1H); MS *m*/*z* 289.1 (M + H)⁺, 221.4 ([M − C₃H₃N₂]•)⁺; ESI-FTICR-MS *m*/*z* 289.11150 ([M + H]⁺, calcd for C₁₄H₁₇ON₄S⁺ 289.11175); HPLC (214 nm) *t*_R 14.77 min (97.7%).

N-(3-(1*H*-Imidazol-1-yl)propyl)-5,6-dimethoxybenzo[*d*]thiazol-2-amine 69. Step A. 5,6-Dimethoxybenzo[*d*]thiazol-2-amine $61.^{22}$ 3,4-Dimethoxyaniline 60 (6.00 g, 39.2 mmol, 1.0 equiv) and KSCN (15.2 g, 157 mmol, 1.0 equiv) were dissolved in acetic acid (96%, 70 mL). Then a solution of bromine (6.23 g, 39.2 mmol, 1.0 equiv) in acetic acid (96%, 30 mL) was added dropwise and the solution was stirred for 10 h at 35 °C. The solution was filtered and neutralized by means of aqueous ammonia (33%). The precipitate was filtered off, dried over P₂O₅ under reduced pressure, and used without further purification: yield 0.92 g (11.5%).

Step B. 2-Chloro-5,6-dimethoxybenzo[d]thiazole 62.23 61 (0.950 g, 13.8 mmol, 1.0 equiv) was dissolved in aqueous H₃PO₄ (85%, 30 mL), and then a solution of NaNO₂ (0.950 g, 13.8 mmol, 1.0 equiv) in water (1.43 mL) was added dropwise over a period of 30 min. The solution was stirred for 30 min and then a solution of CuSO₄•5H₂O (4.56 g, 18.3 mmol, 1.33 equiv) and NaCl (5.65 g, 0.1 mol, 7.25 equiv) in water (18 mL) was added dropwise at -5 °C. The solution was stirred for 1 h at -5 °C and then extracted twice by means of Et₂O (50 mL). The organic phase was washed by means of aqueous NaHCO₃ followed by water, dried over Na₂-SO₄, and filtered. The solvent was evaporated and the residue was used without further purification: yield 0.32 g (31.7%). 69 was prepared as described above [9 (0.16 mL, 3.2 mmol), 62 (0.32 g, 1.4 mmol)]: yield 0.16 g (36.9%); mp 118.0-118.7 °C; ¹H NMR $(CDCl_3) \delta 1.98-2.02, (m, 2H), 3.27-3.34 (m, 2H), 3.84 (s, 3H),$ 3.86 (s, 3H), 4.03-4.06 (m, 2H), 6.91 (s, 1H), 7.02 (s, 1H), 7.05 (s, 1H), 7.10 (s, 1H), 7.24 (s, 1H), 7.48 (s, 1H); MS m/z 319.2 (M + H)⁺, 251.4 ([M - C₃H₃N₂][•])⁺; ESI-FTICR-MS m/z 319.12219 ([M + H]⁺, calcd for $C_{15}H_{19}O_2N_4S^+$ 319.12232); HPLC (214 nm) t_R 13.09 min (99.7%).

General Procedure for the Synthesis of the *N*-(3-(1*H*-Imidazol-1-yl)propyl)-2-phenylethanethioamides 70–77, 81. A mixture of NEt₃ (0.58 mL, 4.0 mmol, 1.0 equiv) and the corresponding primary amine (4.0 mmol, 1.0 equiv) in CH₂Cl₂ (20 mL) was added dropwise to an ice-cooled, stirred solution of the corresponding acid chloride (4.0 mmol, 1.0 equiv) in CH₂Cl₂ (30 mL). The mixture was allowed to warm to room temperature and stirred for 1 h. The mixture was diluted by adding CH₂Cl₂ (20 mL). The organic layer was washed by means of a saturated aqueous solution of NaHCO₃ and water (30 mL per washing step). The organic solution was dried over Na₂SO₄ and filtered, and the solvent

was removed under reduced pressure. After redissolving in dry 1,4dioxane (50 mL), Lawesson's reagent (0.89 g, 2.2 mmol, 0.55 equiv) was added, and the mixture was heated to reflux and stirred for 8 h. The solvent was removed under reduced pressure and the crude product was redissolved in CH₂Cl₂ (50 mL). The organic layer was washed three times by means of a saturated aqueous solution of NaHCO₃ followed three times by water (30 mL per washing step), dried over Na₂SO₄, and filtered, and the organic solvent was removed. The compounds were purified by chromatography using a Chromatotron device (Harrison Research Ltd.), utilizing silica gel plates of a layer thickness of 2 mm and a CHCl₃/ MeOH gradient as eluting system.

N-(3-(1*H*-Imidazol-1-yl)propyl)-2-(3,4-dimethoxyphenyl)ethanethioamide 70: yield 0.14 g (10.6%); mp 148.0–150.0 °C; ¹H NMR δ 2.06–2.09 (m, 2H), 3.45–3.47 (m, 2H), 3.70 (s, 6H), 3.77 (s, 2H), 4.11–4.15 (m, 2H), 6.80–6.86 (m, 3H), 7.66 (s, 1H), 7.72 (s, 1H), 8.92 (s, 1H), 9.09 (s, 1H); MS *m*/*z* 320.2 (M + H)⁺, 252.2 ([M – C₃H₃N₂][•])⁺; ESI-FTICR-MS *m*/*z* 342.12408 ([M + Na]⁺, calcd for C₁₆H₂₁O₂N₃SNa⁺ 342.12466); HPLC (214 nm) *t*_R 21.25 min (100%).

(*R*)-*N*-(3-(1*H*-Imidazol-1-yl)propyl)-2-phenylpropanethioamide 71: yield 0.17 g (15.8%); mp 82.0–82.5 °C; ¹H NMR δ 1.48 (d, *J* = 7.3 Hz, 3H), 1.94–1.99 (m, 2H), 3.40–3.45 (m, 2H), 3.89– 3.93 (m, 2H), 4.05 (q, *J* = 7.3 Hz, 1H), 6.88 (s, 1H), 7.12 (s, 1H), 7.15–7.23 (m, 1H), 7.24–7.35 (m, 2H), 7.35–7.41 (m, 2H), 7.55 (s, 1H), 10.09 (s, 1H); MS *m*/*z* 274.4 (M + H)⁺, 206.3 ([M – C₃H₃N₂][•])⁺; ESI-FTICR-MS *m*/*z* 296.11895 ([M + Na]⁺, calcd for C₁₅H₁₉N₃SNa⁺ 296.11918); HPLC (214 nm) *t*_R 23.01 min (99.2%).

(*S*)-*N*-(3-(1*H*-Imidazol-1-yl)propyl)-2-phenylpropanethioamide 72: yield 0.15 g (13.3%); mp 82.5–83.5 °C; ¹H NMR δ identical with that of 71; MS *m*/*z* 274.4 (M + H)⁺, 206.3 ([M – C₃H₃N₂][•])⁺; ESI-FTICR-MS *m*/*z* 296.11882 ([M + Na]⁺, calcd for C₁₅H₁₉N₃SNa⁺ 296.11918); HPLC (214 nm) *t*_R 22.72 min (98.7%).

N-(**3**-(**1***H*-**Imidazol-1-yl**)**propyl**)-**2**,**2**-diphenylethanethioamide 73: yield 0.015 g (1.62%); mp 91.0–92.5 °C; ¹H NMR δ ¹H NMR δ ^{1.94}–1.99 (m, 2H), 3.40–3.45 (m, 2H), 3.89–3.93 (m, 2H), 4.73 (s, 1H), 6.88 (s, 1H), 6.91 (s, 1H), 7.09 (s, 1H), 7.15– 7.23 (m, 4H), 7.24–7.35 (m, 2H), 7.35–7.45 (m, 4H), 10.13 (s, 1H); MS *m*/*z* 336.3 (M + H)⁺, 268.2 ([M – C₃H₃N₂]•)⁺; ESI-FTICR-MS *m*/*z* 336.15246 ([M + H]⁺, calcd for C₂₀H₂₂N₃S⁺ 336.15289); HPLC (214 nm) *t*_R 32.93 min (97.9%).

N-(3-(1*H*-Imidazol-1-yl)propyl)-1-(4-methoxyphenyl)cyclopropanecarbothioamide 74: yield 0.45 g (35.5%); mp 129.0– 129.5 °C; ¹H NMR δ 1.06–1.08 (m, 2H), 1.54–1.56 (m, 2H), 1.90–1.97 (m, 2H), 3.44–3.48 (m, 2H), 3.73 (s, 3H), 3.82–3.89 (m, 2H), 6.87–6.88 (m, 3H), 7.10 (s, 1H), 7.25–7.26 (m, 2H), 7.58 (s, 1H), 8.96 (br s, 1H); MS *m*/*z* 316.0 (M + H)⁺, 248.4 ([M – C₃H₃N₂])⁺; ESI-FTICR-MS *m*/*z* 338.12952 ([M + Na]⁺, calcd for C₁₇H₂₂N₃OSNa⁺ 338.12975); HPLC (214 nm) *t*_R 14.96 min (98.2%).

N-(3-(1*H*-Imidazol-1-yl)propyl)-1-(4-chlorophenyl)cyclobutanecarbothioamide 75: yield 0.55 g (41.5%); mp 137.5–139.0 °C; ¹H NMR δ 1.55–1.75 (m, 2H), 1.85–1.95 (m, 2H), 2.48– 2.53 (m, 2H), 2.77–2.83 (m, 2H), 3.41–3.45 (m, 2H), 3.79–3.81 (m, 2H), 6.85 (s, 1H), 7.03 (s, 1H), 7.37–7.39 (m, 2H), 7.48 (s, 1H), 7.52–7.54 (m, 2H), 9.62 (s, 1H); MS *m*/*z* 334.3 (M + H)⁺, 266.1 ([M – C₃H₃N₂]•)⁺; ESI-FTICR-MS *m*/*z* 334.12952 ([M + H]⁺, calcd for C₁₇H₂₁N₃SCl⁺ 334.11392); HPLC (214 nm) *t*_R 14.67 min (100%).

N-(3-(1*H*-Imidazol-1-yl)propyl)-1-(4-chlorophenyl)cyclopentanecarbothioamide 76: yield 0.53 g (38.4%); mp 140.0–141.0 °C; ¹H NMR δ 1.51–1.63 (m, 4H), 1.86–1.92 (m, 2H), 2.00– 2.05 (m, 2H), 2.57–2.62 (m, 2H), 3.44–3.48 (m, 2H), 3.76–3.79 (m, 2H), 6.85 (s, 1H), 7.03 (s, 1H), 7.34–7.37 (m, 2H), 7.40– 7.42 (m, 2H), 7.48 (s, 1H), 9.34 (s, 1H); MS *m*/*z* 348.2 (M + H)⁺, 280.2 ([M – C₃H₃N₂]•)⁺; ESI-FTICR-MS *m*/*z* 348.12930 ([M + H]⁺, calcd for C₁₈H₂₃N₃SCl⁺ 348.12957); HPLC (214 nm) *t*_R 15.67 min (99.3%).

N-(**3**-(**1***H*-**Imidazol-1-yl**)**propyl**)-**1**-(**4**-**methoxyphenyl**)**cyclohexanecarbothioamide 77:** yield 0.49 g (33.9%); mp 162.5–164.0 °C; ¹H NMR δ 1.26–1.29 (m, 1H), 1.39–1.49 (m, 5H), 1.86– 1.96 (m, 4H), 2.46–2.49 (m, 2H), 3.46–3.53 (m, 2H), 3.68 (s, 3H), 3.74–3.77 (m, 2H), 6.82–6.85 (m, 3H), 7.02 (s, 1H), 7.30–7.33 (m, 2H), 7.49 (s, 1H), 9.17 (s, 1H); MS m/z 358.3 (M + H)⁺, 290.3 ([M – C₃H₃N₂]•)⁺; ESI-FTICR-MS m/z 358.19456 ([M + H]⁺, calcd for C₂₀H₂₈N₃OS⁺ 358.19475); HPLC (214 nm) $t_{\rm R}$ 12.61 min (99.2%).

N-(3-(1H-Imidazol-1-yl)propyl)-1-(3,4-dimethoxyphenyl)cyclopropanecarbothioamide 81. Step A. 1-(3,4-Dimethoxyphenyl)cyclopropanecarboxylic acid 79 was prepared according to the method described in ref 24. Thereby, 3,4-dimethoxyphenylacetonitrile 78 (2.06 g, 11.6 mmol, 1.0 equiv), 2-bromo-1-chloroethane (2.90 mL, 34.8 mmol, 3.0 equiv), and TEBA (0.264 g, 1.16 mmol, 0.1 equiv) were dissolved in a solution of KOH (60% in water, 10 mL). The solution was vigorously stirred for 2 d at room temperature. The solution was diluted by means of water (50 mL) and extracted with CH_2Cl_2 (3 × 80 mL). The organic phase was separated, dried over Na₂SO₄, and filtered, and the solvent was evaporated. The residue was subjected to flash chromatography utilizing EtOAc/heptane as elution system. The resulting nitrile was dissolved in ethylene glycol (70 mL) and powdered KOH (1.85 g, 33.0 mmol, 2.8 equiv) was added. The solution was kept overnight at reflux. After cooling to room temperature, water (60 mL) was added and the solution was acidified by concentrated aqueous HCl. The solution was extracted by means of Et₂O (200 mL). The solvent was evaporated and the remaining oil was dried at 60 °C over KOH at reduced pressure: yield 0.76 g (29.6%); ¹H NMR δ 1.11 (dd, J = 3.7 Hz, 2.9 Hz, 2H), 1.58 (dd, J = 3.7 Hz, 2.9 Hz, 2H), 6.88-6.90 (m, 3H); MS (anion mode) m/z 221.2 (M-H)⁻.

Step B. N-(3-(1H-Imidazol-1-yl)propyl)-1-(3,4-dimethoxyphenyl)cyclopropanecarboxamide 80. 79 (0.760 g, 3.44 mmol, 1.02 equiv) was dissolved dry THF (10 mL). Isobutyl chloroformate (CAIBE) (0.46 mL, 3.5 mmol) and N-methylmorpholine (NMM) (0.38 mL, 3.5 mmol, 1.02 equiv) were added. After stirring for 5 min at -5 °C, 9 (0.43 mL, 3.5 mmol, 1.02 equiv) was added and the mixture stirred for 10 h at room temperature. The solvent was evaporated and the residue was dissolved in CHCl₃ (20 mL). The organic layer was washed by means of a saturated aqueous solution of NaHCO₃, dried over Na₂SO₄, and filtered, and the solvent was evaporated. The remaining oil was subjected to purification by chromatography utilizing a Chromatotron device (Harrison Research Ltd.), utilizing silica gel plates of a layer thickness of 2 mm and CHCl₃ as eluent: yield 0.61 g (60.2%); ¹H NMR δ 1.11 (dd, J =3.7 Hz, 2.9 Hz, 2H), 1.57 (dd, *J* = 3.7 Hz, 2.9 Hz, 2H), 2.02–2.05 (m, 2H), 3.48-3.55 (m, 2H), 3.73 (s, 6H), 4.09-4.23 (m, 2H), 6.88-6.90 (m, 3H), 7.65 (s, 1H), 7.75 (s, 1H), 8.15-8.27 (m, 1H), 9.09 (s, 1H); MS m/z 330.1 (M + H)⁺, 262.1 ([M - C₃H₃N₂][•])⁺.

80 (0.67 g, 2.0 mmol, 1.4 equiv) was subjected to the method described above, utilizing Lawesson's reagent (0.580 g, 1.43 mmol, 1.0 equiv), generating **81:** yield 0.40 g (59.4%); mp 127.0–127.5 °C; ¹H NMR δ 1.12 (dd, J = 3.7 Hz, 2.9 Hz, 2H), 1.57 (dd, J = 3.7 Hz, 2.9 Hz, 2H), 2.02–2.05 (m, 2H), 3.48–3.55 (m, 2H), 3.73 (s, 6H), 4.09–4.23 (m, 2H), 6.88–6.90 (m, 3H), 7.65 (s, 1H), 7.75 (s, 1H), 8.92–9.05 (m, 1H), 9.09 (s, 1H); MS m/z 346.0 (M + H)⁺, 278.2 ([M – C₃H₃N₂]*)+, 177.1 ([M – C₆H₈N₃S]*)+; ESI-FTICR-MS m/z 346.15810 ([M + H]⁺, calcd for C₁₈H₂₄N₃O₂S⁺ 346.15837); HPLC (214 nm) $t_{\rm R}$ 22.9 min (98.5%).

5-(1*H*-Imidazol-1-yl)-*N*-(3,4-dimethoxyphenyl)pentanethioamide 85. Step A. 6-Bromo-*N*-(3,4-dimethoxyphenyl)pentanamide 83. A mixture of NEt₃ (2.08 mL, 14.9 mmol, 1.0 equiv) and 3,4-dimethoxyaniline (2.08 g, 14.9 mmol, 1.0 equiv) in 1,4-dioxane (20 mL) was added dropwise to an ice-cooled, stirred solution of 5-bromopentanoyl chloride 82 (2.79 g, 14.9 mmol, 1.0 equiv) in 1,4-dioxane (30 mL). The solution was allowed to warm to room temperature and stirred for 2 h. The solvent was evaporated, and the remaining oil was redissolved in CH₂Cl₂. The organic layer was washed two times with water, dried over Na₂SO₄, and filtered, and the solvent was removed under reduced pressure. The resulting product was used for the next step without further purification: yield 3.80 g (80.5%); MS m/z 251.1 (M + H)⁺.

Step B. 5-(1*H*-Imidazol-1-yl)-*N*-(3,4-dimethoxyphenyl)pentanamide 84. Imidazole (0.820 g, 12.0 mmol, 1.0 equiv) and

sodium hydride (60% in mineral oil, 0.480 g, 12.0 mmol, 1.0 equiv) were suspended in DMF (30 mL) and the mixture was stirred under argon atmosphere at room temperature for 3 h. 83 (3.80 g, 12.0 mmol, 1.0 equiv) was added and the mixture was heated to 100 °C and stirred for 8 h. The solvent was evaporated, hot toluene (20 mL) was added, and the solution was filtered. This procedure was repeated three times, and the filtrates were combined. The solvent was removed under reduced pressure and the remaining oil was used without further purification: yield 1.26 g (34.2%). 84 (1.26 g, 4.10 mmol) was subjected to the method described above, utilizing Lawesson's reagent (1.17 g, 2.90 mmol), yielding 85. The resulting product was subjected to purification by chromatography utilizing a Chromatotron device (Harrison Research Ltd.), silica gel plates of a layer thickness of 2 mm, and a CHCl₃/MeOH as eluting system: yield 0.200 g (15.3%); mp 128.0-128.5 °C; ¹H NMR δ 1.65-1.70 (m, 2H), 1.75-1.80 (m, 2H), 2.71-2.72 (m, 2H), 3.71 (s, 3H), 3.74 (s, 3H), 4.02-4.05 (m, 2H), 6.87-7.13 (m, 2H), 7.19 (s, 1H), 7.28-7.29 (m, 1H), 7.52 (s, 1H), 7.72 (s, 1H), 11.40 (s, 1H); MS *m/z* 320.2 (M + H)⁺, 252.2 ([M - $C_{3}H_{3}N_{2}]^{\bullet}$; ESI-FTICR-MS m/z 320.13550 ([M + H]⁺, calcd for $C_{16}H_{22}N_{3}O_{2}S^{+}$ 320.13545); HPLC (214 nm) t_{R} 24.35 min (99.2%). side product **85a**: yield 0.610 g (58.8%); ¹H NMR δ 1.73–1.75 (m, 2H), 1.89-1.94 (m, 2H), 2.93-2.95 (m, 2H), 3.62-3.67 (m, 2H), 3.71 (s, 3H), 3.73 (s, 3H), 6.73 (d, J = 6.4 Hz, 1H), 6.84 (s, 1H), 6.96 (d, J = 6.4 Hz, 1H); MS m/z 252.1 (M + H)⁺.

Inhibitor Testing. QC activity was evaluated fluorometrically in a coupled assay.²⁷ Thereby, Gln-AMC was used as substrate and pyroglutamyl peptidase as the auxiliary enzyme. After conversion of Gln-AMC into pGlu-AMC by QC, the pGlu-AMC was hydrolyzed by pyroglutamyl peptidase. The generated AMC was detected with excitation/emission wavelengths of 380/460 nm. All determinations were carried out at 30 °C using a BMG Novostar reader for microplates. The inhibition constants were evaluated by fitting the data of the obtained progress curves according to the general equation for competitive inhibition using GraFit software (Erithacus Software Ltd.).

Gln-AMC, pyroglutamyl peptidase, and QC were dissolved in 0.05 M Tris-HCl (pH 8.0). Depending on the solubility, inhibitor stock solutions (0.1 M) were prepared either in water or in DMSO. The final concentration of DMSO in the sample did not exceed 0.1%, which has shown to have no influence on determination of QC activity. Dilution series were prepared in 0.05 M Tris-HCl at pH 8.0.

A sample consists of varying concentrations of the substrate (100 μ L, 0.25–4 × K_m), 100 μ L of different concentrations of the inhibitor, 25 μ L of pyroglutamyl peptidase (0.1 U/mL), and 25 μ L of QC (0.12 μ g/mL).

After incubation of 10 min, the reaction was started by addition of QC. The activity was determined from a standard curve of AMC under assay conditions for 10 min.

Molecular Modeling. The flex-alignment function of the MOE software package (ver. 2003.02, Chemical Computing Group, Montreal, Canada) was used by applying the following settings: mmff94s.ff force field, with all other tools were set following the instructions suggested in the tutorials. The results were sorted and ranked first concerning their values for the average strain energy (U), followed by the configuration score (S).

Note Added in Proof: During the editorial processing of this paper Huang et al.³⁰ published the 3D structure of human QC, containing also simple imidazole-derived inhibitors.¹³ The results presented there prove the presence of one zinc-ion in the active site, as suggested by Schilling et al.^{13,26} Moreover, the co-crystallized inhibitors were found to act as zinc-chelators utilizing one coordination site. This supports our assumptions in the present manuscript regarding the binding mode of the inhibitory compounds.

Acknowledgment. The authors thank Dr. Jürgen Schmidt, Leibniz Institute of Plant Biochemistry, Halle, Germany, for recording of the high-resolution mass spectra; Prof. Dr. Bodo Dobner, Martin-Luther-University, Halle, Germany, for the critical reading of the manuscript; and Dr. Fred Rosche, Antje Hamann, and Matthias Tkazyk for analytical and technical support. The work was supported by the Federal Ministry of Education and Research, Germany, Grant no. 0313185 to H.U.D.

Supporting Information Available: MS, HPLC, and NMR data and a zipped file containing a table with the solutions of the flexible alignment with the respective average strain energy (U) and configuration score (S) values in sdf format. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (1) Busby, W. H.; Humm, J.; Kizer, J. S.; Youngblood, W. W.; Quackenbush, G. An enzyme(s) that converts glutaminyl-peptides into pyroglutamyl-peptides. Presence in pituitary, brain, adrenal medulla, and lymphocytes. *J Biol Chem.* **1987**, *262*, 8532–8536.
- (2) Fischer, W. H. and Spiess, J. Identification of a mammalian glutaminyl cyclase converting glutaminyl into pyroglutamyl peptides. *Proc Natl Acad Sci U.S.A.* **1987**, 84, 3628–3632.
- (3) Schilling, S.; Manhart, S.; Hoffmann, T.; Ludwig, H.-H.; Wasternack, C.; Demuth, H.-U. Substrate specificity of glutaminyl cyclases from plants and animals. *Biol Chem.* 2003, *384*, 1583–1592.
 (4) Vale, W.; Spiess, J.; Rivier, C.; Rivier, J. Characterization of a 41-
- (4) Vale, W.; Spiess, J.; Rivier, C.; Rivier, J. Characterization of a 41residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. *Science*. **1981**, *213*, 1394– 1397.
- (5) Awade, A. C.; Cleuziat, P.; Gonzales, T.; Robert-Baudouy, J. Pyrrolidone carboxyl peptidase (Pcp): An enzyme that removes pyroglutamic acid (pGlu) from pGlu-peptides and pGlu-proteins. *Proteins.* **1994**, *20*, 34–51.
- (6) Garavelli, J. S. The RESID Database of protein structure modifications: 2000 update. *Nucleic Acids Res.* 2000, 28, 209–211.
- (7) Bockers, T. M.; Kreutz, M. R.; Pohl, T. Glutaminyl-cyclase expression in the bovine/porcine hypothalamus and pituitary. *J Neuroendocrinol.* **1995**, *7*, 445–453.
- (8) Schilling, S.; Hoffmann, T.; Manhart, S.; Hoffmann, M.; Demuth, H.-U. Glutaminyl cyclases unfold glutamyl cyclase activity under mild acid conditions. *FEBS Lett.* **2004**, *563*, 191–196.
- (9) Saido, T. C. Involvement of polyglutamine endolysis followed by pyroglutamate formation in the pathogenesis of triplet repeat/ polyglutamine-expansion diseases. *Med Hypotheses* 2000, 54, 427– 429.
- (10) Pike, C. J.; Overman, M. J.; Cotman, C. W. Amino-terminal deletions enhance aggregation of beta-amyloid peptides in vitro. *J. Biol. Chem.* **1995**, 270, 23895–23898.
- (11) Saido, T. C.; Iwatsubo, T.; Mann, D. M.; Shimada, H.; Ihara, Y.; Kawashima, S. Dominant and differential deposition of distinct betaamyloid peptide species, A beta N3(pE), in senile plaques. *Neuron* **1995**, *14*, 457–466.
- (12) Iwatsubo, T.; Saido, T. C.; Mann, D. M.; Lee, V. M.; Trojanowski, J. Q. Full-length amyloid-beta (1-42(43)) and amino-terminally modified and truncated amyloid-beta 42(43) deposit in diffuse plaques. Am. J. Pathol. **1996**, 149, 1823-1830.
- (13) Schilling, S.; Niestroj, A. J.; Rahfeld, J. U.; Hoffmann, T.; Wermann, M.; Zunkel, K.; Wasternack, C.; Demuth, H.-U. Identification of human glutaminyl cyclase as a metalloenzyme. Potent inhibition by imidazole derivatives and heterocyclic chelators. *J. Biol. Chem.* 2003, 278, 49773–49779.
- (14) Booth, R. E.; Lovell, S. C.; Misquitta, S. A.; Bateman, R. C. Human glutaminyl cyclase and bacterial zinc aminopeptidase share a common fold and active site. *BMC Biol.* 2004, 2, 2.
- (15) Bateman, R. C., Jr.; Temple, J. S.; Misquitta, S. A.; Booth, R. E. Evidence for essential histidines in human pituitary glutaminyl cyclase. *Biochemistry* **2001**, *40*, 11246–11250.
- (16) Lee, K. J.; Joo, K. C.; Kim, E. J.; Lee, M.; Kim, D. H. A new type of carboxypeptidase A inhibitors designed using an imidazole as a zinc coordinating ligand. *Bioorg. Med. Chem.* **1997**, *5*, 1989–1998.
- (17) Katz, B. A.; Clark, J. M.; Finer-Moore, J. S.; Jenkins, T. E.; Johnson, C. R.; Ross, M. J.; Luong, C.; Moore, W. R.; Stroud, R. M. Design of potent selective zinc-mediated serine protease inhibitors. *Nature* **1998**, *391*, 608–612.
- (18) Dhanak, D.; Burton, G.; Christmann, L. T.; Darcy, M. G.; Elrod, K. C.; Kaura, A.; Keenan, R. M.; Link, J. O.; Peishoff, C. E.; Shah, D. H. Metal mediated protease inhibition: Design and synthesis of inhibitors of the human cytomegalovirus (hCMV) protease. *Bioorg. Med. Chem. Lett.* **2000**, *10*, 2279–2282.

- (19) (a) Wright, W. B., Jr.; Press, J. B.; Chan, P. S.; Marsico, J. W.; Haug, M. F.; Lucas, J.; Tauber, J.; Tomcufcik, A. S. Thromboxane synthetase inhibitors and antihypertensive agents. 1. N-[(1H-Imidazol-1-yl)alkyl]aryl amides and N-[(1H-1,2,4-triazol-1-yl)alkyl]aryl amides. J. Med. Chem. 1986, 26, 523-530. (b). Hay, M. P.; Wilson, W. R.; Moselen, B. D.; Palmer, B. D.; Denny, W. A.; Hypoxia-selective antitumor agents. 8. Bis(nitroimidazolyl)alkanecarboxamides: A new class of hypoxic cell radiosenstitiseres. J. Med. Chem. 1994, 37, 381-391.
- (20) Newman, M. S.; Broger, W. J.; LaPidus, J. B.; Tye, A. Investigation of the gem-dialkyl effect in medicinal agents. J. Med. Chem. 1972, 15, 1003–1006.
- (21) Zuliani, V.; Bordi, F.; Rivara, M.; Silva, C.; Vacondio, F.; Morini, G.; Rivara, S.; Barocelli, E.; Ballabeni, V.; Bertoni, S.; Magnanini, F.; Plazzi, P. V. The role of HB-donor groups in the heterocyclic polar fragment of H3-antagonists. I. Synthesis and biological assays. *Il Farmaco* **2003**, *58*, 891–899.
- (22) Stuckwish, C. G.; Derivatives of 2-Amino-6-methoxybenzothiazole. J. Am. Chem. Soc. 1949, 71, 3417.
- (23) Giles, M. E.; Thomson, C.; Eyley, St. C.; Cole, A. J.; Goodwin, Chr. J.; Hurved, P. A.; Morlin, A. J. G.; Atkinson, St.; Just, C.; Dean, J. C.; Singleton, J. T.; Longton, A. J.; Woodland, I.; Teasdale, A.; Gregertsen, B.; Else, H.; Athwalm, M. S.; Tatterton, St.; Knott, J. M.; Thompson, N.; Smith, St. Development of a manufacturing

process for sibenadet hydrochloride, the active incridient of viozan. *Org. Proc. Res. Dev.* **2004**, *8*, 628–642.

- (24) Fedorynski, M. and Jonczyk, A. Synthesis of 1-arylcyclopropanecarbonitriles under phase-transfer catalytic conditions. *Org. Prep. Proced. Int.* **1995**, 27, 355–359.
- (25) Roberts, D. R. Cyclopropylcarbinyl p-toluenesulfonate solvolysis. III. 1-p-Anisyl substituent effect. J. Org. Chem. 1968, 33, 2712–2714.
- (26) Schilling, S.; Cynis, H.; von Bohlen, H.; Hoffmann, T.; Wermann, M.; Heiser, U.; Buchholz, M.; Zunkel, K.; Demuth, H.-U. Isolation, Catalytic properties and new competitive inhibitors of murine glutaminyl cyclase. *Biochemistry* **2005**, *44*, 13415–13424.
- (27) Lee, H. J.; Choi, Y.-S.; Lee, K. B.; Park, J.; Yoon, C.-J. Hydrogen bonding abilities of thioamide. J. Phys. Chem. A 2002, 106, 7010– 7017.
- (28) Aleman, C. On the ability of modified peptide links to form hydrogen bonds. J. Phys. Chem. A. 2001, 105, 6717–6723.
- (29) Schilling, S.; Hoffmann, T.; Wermann, M.; Heiser, U.; Wasternack, C.; Demuth, H.-U. Continuous spectrometric assays for glutaminyl cyclase activity. *Anal. Biochem.* **2002**, *303*, 49–56.
- (30) Huang, K.-F.; Liu, Y.-L.; Cheng, W. J.; Ko-, T.-P. and Wang, A. H.-J. Crystal structures of human glutaminyl cyclase, an enzyme responsible for protein N-terminal pyroglutamate formation. *Proc. Natl. Acad. Sci. U.S.A.* **2005**, *102*, 13117–13122.

JM050756E